标签:可用内存 缺点 poi 性能 动态 优秀 单位 特征 不可
并行和并发
- 并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
- 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行。而垃圾收集程序运行在另一个CPU上。
吞吐量(Throughput)
吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即
吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间)。
假设虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
Minor GC 和 Full GC
- 新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。具体原理见上一篇文章。
- 老年代GC(Major GC / Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。
Serial(串行)收集器是最基本、发展历史最悠久的收集器,它是采用复制算法的新生代收集器,曾经(JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。它是一个单线程收集器,只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集时,必须暂停其他所有的工作线程,直至Serial收集器收集结束为止(“Stop The World”)。这项工作是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说是难以接收的。
下图展示了Serial 收集器(老年代采用Serial Old收集器)的运行过程:
为了消除或减少工作线程因内存回收而导致的停顿,HotSpot虚拟机开发团队在JDK 1.3之后的Java发展历程中研发出了各种其他的优秀收集器,这些将在稍后介绍。但是这些收集器的诞生并不意味着Serial收集器已经“老而无用”,实际上到现在为止,它依然是HotSpot虚拟机运行在Client模式下的默认的新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程相比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得更高的单线程收集效率。
在用户的桌面应用场景中,分配给虚拟机管理的内存一般不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本不会再大了),停顿时间完全可以控制在几十毫秒最多一百毫秒以内,只要不频繁发生,这点停顿时间可以接收。所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。
ParNew收集器就是Serial收集器的多线程版本,它也是一个新生代收集器。除了使用多线程进行垃圾收集外,其余行为包括Serial收集器可用的所有控制参数、收集算法(复制算法)、Stop The World、对象分配规则、回收策略等与Serial收集器完全相同,两者共用了相当多的代码。
ParNew收集器的工作过程如下图(老年代采用Serial Old收集器):
ParNew收集器除了使用多线程收集外,其他与Serial收集器相比并无太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关的重要原因是,除了Serial收集器外,目前只有它能和CMS收集器(Concurrent Mark Sweep)配合工作,CMS收集器是JDK 1.5推出的一个具有划时代意义的收集器,具体内容将在稍后进行介绍。
ParNew 收集器在单CPU的环境中绝对不会有比Serial收集器有更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越。在多CPU环境下,随着CPU的数量增加,它对于GC时系统资源的有效利用是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多的情况下可使用-XX:ParallerGCThreads参数设置。
Parallel Scavenge收集器也是一个并行的多线程新生代收集器,它也使用复制算法。Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标是达到一个可控制的吞吐量(Throughput)。
停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验。而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
Parallel Scavenge收集器除了会显而易见地提供可以精确控制吞吐量的参数,还提供了一个参数-XX:+UseAdaptiveSizePolicy,这是一个开关参数,打开参数后,就不需要手工指定新生代的大小(-Xmn)、Eden和Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种方式称为GC自适应的调节策略(GC Ergonomics)。自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。
另外值得注意的一点是,Parallel Scavenge收集器无法与CMS收集器配合使用,所以在JDK 1.6推出Parallel Old之前,如果新生代选择Parallel Scavenge收集器,老年代只有Serial Old收集器能与之配合使用。
Serial Old 是 Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”(Mark-Compact)算法。
此收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,它还有两大用途:
它的工作流程与Serial收集器相同,这里再次给出Serial/Serial Old配合使用的工作流程图:
Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。前面已经提到过,这个收集器是在JDK 1.6中才开始提供的,在此之前,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old以外别无选择,所以在Parallel Old诞生以后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。Parallel Old收集器的工作流程与Parallel Scavenge相同,这里给出Parallel Scavenge/Parallel Old收集器配合使用的流程图:
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它非常符合那些集中在互联网站或者B/S系统的服务端上的Java应用,这些应用都非常重视服务的响应速度。从名字上(“Mark Sweep”)就可以看出它是基于“标记-清除”算法实现的。
CMS收集器工作的整个流程分为以下4个步骤:
由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过下图可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的时间:
优点
CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,因此CMS收集器也被称为并发低停顿收集器(Concurrent Low Pause Collector)。
缺点
G1(Garbage-First)收集器是当今收集器技术发展最前沿的成果之一,它是一款面向服务端应用的垃圾收集器,HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点:
横跨整个堆内存
在G1之前的其他收集器进行收集的范围都是整个新生代或者老生代,而G1不再是这样。G1在使用时,Java堆的内存布局与其他收集器有很大区别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,而都是一部分Region(不需要连续)的集合。
建立可预测的时间模型
G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。
避免全堆扫描——Remembered Set
G1把Java堆分为多个Region,就是“化整为零”。但是Region不可能是孤立的,一个对象分配在某个Region中,可以与整个Java堆任意的对象发生引用关系。在做可达性分析确定对象是否存活的时候,需要扫描整个Java堆才能保证准确性,这显然是对GC效率的极大伤害。
为了避免全堆扫描的发生,虚拟机为G1中每个Region维护了一个与之对应的Remembered Set。虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。
如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:
通过下图可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段(Safepoint处):
收集器 | 串行、并行or并发 | 新生代/老年代 | 算法 | 目标 | 适用场景 |
---|---|---|---|---|---|
Serial | 串行 | 新生代 | 复制算法 | 响应速度优先 | 单CPU环境下的Client模式 |
Serial Old | 串行 | 老年代 | 标记-整理 | 响应速度优先 | 单CPU环境下的Client模式、CMS的后备预案 |
ParNew | 并行 | 新生代 | 复制算法 | 响应速度优先 | 多CPU环境时在Server模式下与CMS配合 |
Parallel Scavenge | 并行 | 新生代 | 复制算法 | 吞吐量优先 | 在后台运算而不需要太多交互的任务 |
Parallel Old | 并行 | 老年代 | 标记-整理 | 吞吐量优先 | 在后台运算而不需要太多交互的任务 |
CMS | 并发 | 老年代 | 标记-清除 | 响应速度优先 | 集中在互联网站或B/S系统服务端上的Java应用 |
G1 | 并发 | both | 标记-整理+复制算法 | 响应速度优先 | 面向服务端应用,将来替换CMS |
ZGC的成绩是,无论你开了多大的堆内存(1288G? 2T?),硬是能保证低于10毫秒的JVM停顿,远胜前代的G1。
与标记对象的传统算法相比,ZGC在指针上做标记,在访问指针时加入Load Barrier(读屏障),比如当对象正被GC移动,指针上的颜色就会不对,这个屏障就会先把指针更新为有效地址再返回,也就是,永远只有单个对象读取时有概率被减速,而不存在为了保持应用与GC一致而粗暴整体的Stop The World。
这里的并发(Concurrent),说的是应用线程与GC线程齐头并进,互不添堵。
说几乎,就是还有三个非常短暂的STW的阶段,所以ZGC并不是Zero Pause GC啦。比如开始的Pause Mark Start阶段,要做根集合(root set)扫描,包括全局变量啊、线程栈啊啥的里面的对象指针,但不包括GC堆里的对象指针,所以这个暂停就不会随着GC堆的大小而变化(不过会根据线程的多少啊、线程栈的大小之类的而变化)”。
Colored Pointer 从64位的指针中,借了几位出来表示 Finalizable、Remapped、Marked1、Marked0。 所以它不支持32位指针也不支持压缩指针, 且堆的上限是4TB。
有Load barrier在,就会在不同阶段,根据指针颜色看看要不要做些特别的事情(Slow Path)。
ZGC将堆划分为Region作为清理,移动,以及并行GC线程工作分配的单位。
不过G1一开始就把堆划分成固定大小的Region,而ZGC 可以有2MB,32MB,N× 2MB 三种Size Groups,动态地创建和销毁Region,动态地决定Region的大小。
256k以下的对象分配在Small Page, 4M以下对象在Medium Page,以上在Large Page。
所以ZGC能更好的处理大对象的分配。
CMS是Mark-Sweep标记过期对象后原地回收,这样就会造成内存碎片,越来越难以找到连续的空间,直到发生Full GC才进行压缩整理。
ZGC是Mark-Compact ,会将活着的对象都移动到另一个Region,整个回收掉原来的Region。
而G1 是 incremental copying collector,一样会做压缩。
1. Pause Mark Start -初始停顿标记
停顿JVM地标记Root对象,1,2,4三个被标为live。
2. Concurrent Mark -并发标记
并发地递归标记其他对象,5和8也被标记为live。
3. Relocate - 移动对象
对比发现3、6、7是过期对象,也就是中间的两个灰色region需要被压缩清理,所以陆续将4、5、8 对象移动到最右边的新Region。移动过程中,有个forward table纪录这种转向。
活的对象都移走之后,这个region可以立即释放掉,并且用来当作下一个要扫描的region的to region。所以理论上要收集整个堆,只需要有一个空region就OK了。
4. Remap - 修正指针
最后将指针都妥帖地更新指向新地址。上一个阶段的Remap,和下一个阶段的Mark是混搭在一起完成的,这样非常高效,省却了重复遍历对象图的开销。”
G1 保证“每次GC停顿时间不会过长”的方式,是“每次只清理一部分而不是全部的Region”的增量式清理。
那独立清理某个Region时 , 就需要有RememberSet来记录Region之间的对象引用关系, 这样就能依赖它来辅助计算对象的存活性而不用扫描全堆, RS通常占了整个Heap的20%或更高。
这里还需要使用Write Barrier(写屏障)技术,G1在平时写引用时,GC移动对象时,都要同步去更新RememberSet,跟踪跨代跨Region间的引用,特别的重。而CMS里只有新老生代间的CardTable,要轻很多。
ZGC几乎没有停顿,所以划分Region并不是为了增量回收,每次都会对所有Region进行回收,所以也就不需要这个占内存的RememberSet了,又因为它暂时连分代都还没实现,所以完全没有Write Barrier。
现在多CPU插槽的服务器都是Numa架构了,比如两颗CPU插槽(24核),64G内存的服务器,那其中一颗CPU上的12个核,访问从属于它的32G本地内存,要比访问另外32G远端内存要快得多。
JDK的 Parallel Scavenger 算法支持Numa架构,在SPEC JBB 2005 基准测试里获得40%的提升。
原理嘛,就是申请堆内存时,对每个Numa Node的内存都申请一些,当一条线程分配对象时,根据当前是哪个CPU在运行的,就在靠近这个CPU的内存中分配,这条线程继续往下走,通常会重新访问这个对象,而且如果线程还没被切换出去,就还是这位CPU同志在访问,所以就快了。
在ZGC 官网上有介绍,前面基准测试中的32核服务器,128G堆的场景下,它的配置是:
20条ParallelGCThreads,在那三个极短的STW阶段并行的干活 - mark roots, weak root processing(StringTable, JNI Weak Handles,etc)和 relocate roots ;
4条ConcGCThreads,在其他阶段与应用并发地干活 - Mark,Process Reference,Relocate。 仅仅四条,高风亮节地尽量不与应用争抢CPU 。
ConcCGCThreads开始时各自忙着自己平均分配下来的Region,如果有线程先忙完了,会尝试“偷”其他线程还没做的Region来干活,非常勤奋。
没分代,应该是ZGC唯一的弱点了。
分代原本是因为most object die young的假设,而让新生代和老生代使用不同的GC算法。
如果对整个堆做一个完整并发收集周期,持续的时间可能很长比如几分钟,而此期间新创建的对象,大致上只能当作活对象来处理,即使它们在这周期里其实早就死掉可以被收集了。如果有分代算法,新生对象都在一个专门的区域创建,专门针对这个区域的收集能更频繁更快,意外留活的对象更也少。
标签:可用内存 缺点 poi 性能 动态 优秀 单位 特征 不可
原文地址:https://www.cnblogs.com/snail-gao/p/11756548.html