标签:his 行合并 rac efi 华为 tsp puts 文件 负载
Map端的主要工作:为来自不同表(文件)的key/value对打标签以区别不同来源的记录。然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出。
Reduce端的主要工作:在reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在map阶段已经打标志)分开,最后进行合并就ok了
订单数据表t_order id pid amount 1001 01 1 1002 02 2 1003 03 3 商品信息表t_product pid pname 01 小米 02 华为 03 格力 最终数据形式 id pname amount 1001 小米 1 1004 小米 4 1002 华为 2 1005 华为 5 1003 格力 3 1006 格力 6
缺点:这种方式中,合并的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜(同一个reduce接收到的数据量很大)
解决方案: map端实现数据合并
package com.bigdata.mapreduce.table; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writable; public class TableBean implements Writable { private String order_id; // 订单id private String p_id; // 产品id private int amount; // 产品数量 private String pname; // 产品名称 private String flag;// 表的标记 public TableBean() { super(); } public TableBean(String order_id, String p_id, int amount, String pname, String flag) { super(); this.order_id = order_id; this.p_id = p_id; this.amount = amount; this.pname = pname; this.flag = flag; } public String getFlag() { return flag; } public void setFlag(String flag) { this.flag = flag; } public String getOrder_id() { return order_id; } public void setOrder_id(String order_id) { this.order_id = order_id; } public String getP_id() { return p_id; } public void setP_id(String p_id) { this.p_id = p_id; } public int getAmount() { return amount; } public void setAmount(int amount) { this.amount = amount; } public String getPname() { return pname; } public void setPname(String pname) { this.pname = pname; } @Override public void write(DataOutput out) throws IOException { out.writeUTF(order_id); out.writeUTF(p_id); out.writeInt(amount); out.writeUTF(pname); out.writeUTF(flag); } @Override public void readFields(DataInput in) throws IOException { this.order_id = in.readUTF(); this.p_id = in.readUTF(); this.amount = in.readInt(); this.pname = in.readUTF(); this.flag = in.readUTF(); } @Override public String toString() { return order_id + "\t" + pname + "\t" + amount + "\t" ; } } 2)编写TableMapper程序 package com.bigdata.mapreduce.table; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileSplit; public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean>{ TableBean bean = new TableBean(); Text k = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取输入文件类型 FileSplit split = (FileSplit) context.getInputSplit(); String name = split.getPath().getName(); // 2 获取输入数据 String line = value.toString(); // 3 不同文件分别处理 if (name.startsWith("order")) {// 订单表处理 // 3.1 切割 String[] fields = line.split("\t"); // 3.2 封装bean对象 bean.setOrder_id(fields[0]); bean.setP_id(fields[1]); bean.setAmount(Integer.parseInt(fields[2])); bean.setPname(""); bean.setFlag("0"); k.set(fields[1]); }else {// 产品表处理 // 3.3 切割 String[] fields = line.split("\t"); // 3.4 封装bean对象 bean.setP_id(fields[0]); bean.setPname(fields[1]); bean.setFlag("1"); bean.setAmount(0); bean.setOrder_id(""); k.set(fields[0]); } // 4 写出 context.write(k, bean); } } 3)编写TableReducer程序 package com.bigdata.mapreduce.table; import java.io.IOException; import java.util.ArrayList; import org.apache.commons.beanutils.BeanUtils; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> { @Override protected void reduce(Text key, Iterable<TableBean> values, Context context) throws IOException, InterruptedException { // 1准备存储订单的集合 ArrayList<TableBean> orderBeans = new ArrayList<>(); // 2 准备bean对象 TableBean pdBean = new TableBean(); for (TableBean bean : values) { if ("0".equals(bean.getFlag())) {// 订单表 // 拷贝传递过来的每条订单数据到集合中 TableBean orderBean = new TableBean(); try { BeanUtils.copyProperties(orderBean, bean); } catch (Exception e) { e.printStackTrace(); } orderBeans.add(orderBean); } else {// 产品表 try { // 拷贝传递过来的产品表到内存中 BeanUtils.copyProperties(pdBean, bean); } catch (Exception e) { e.printStackTrace(); } } } // 3 表的拼接 for(TableBean bean:orderBeans){ bean.setPname (pdBean.getPname()); // 4 数据写出去 context.write(bean, NullWritable.get()); } } } 4)编写TableDriver程序 package com.bigdata.mapreduce.table; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class TableDriver { public static void main(String[] args) throws Exception { // 1 获取配置信息,或者job对象实例 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 2 指定本程序的jar包所在的本地路径 job.setJarByClass(TableDriver.class); // 3 指定本业务job要使用的mapper/Reducer业务类 job.setMapperClass(TableMapper.class); job.setReducerClass(TableReducer.class); // 4 指定mapper输出数据的kv类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(TableBean.class); // 5 指定最终输出的数据的kv类型 job.setOutputKeyClass(TableBean.class); job.setOutputValueClass(NullWritable.class); // 6 指定job的输入原始文件所在目录 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行 boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } }
一张表十分小、一张表很大。
在map端缓存多张表,提前处理业务逻辑,这样增加map端业务,减少reduce端数据的压力,尽可能的减少数据倾斜。
(1)在mapper的setup阶段,将文件读取到缓存集合中。 (2)在驱动函数中加载缓存。 job.addCacheFile(new URI("file:/e:/mapjoincache/pd.txt"));// 缓存普通文件到task运行节点
package test; import java.net.URI; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class DistributedCacheDriver { public static void main(String[] args) throws Exception { // 1 获取job信息 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 2 设置加载jar包路径 job.setJarByClass(DistributedCacheDriver.class); // 3 关联map job.setMapperClass(DistributedCacheMapper.class); // 4 设置最终输出数据类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); // 5 设置输入输出路径 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 6 加载缓存数据 job.addCacheFile(new URI("file:///e:/inputcache/pd.txt")); // 7 map端join的逻辑不需要reduce阶段,设置reducetask数量为0 job.setNumReduceTasks(0); // 8 提交 boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } } (2)读取缓存的文件数据 package test; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.util.HashMap; import java.util.Map; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class DistributedCacheMapper extends Mapper<LongWritable, Text, Text, NullWritable>{ Map<String, String> pdMap = new HashMap<>(); @Override protected void setup(Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException { // 1 获取缓存的文件 BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("pd.txt"),"UTF-8")); String line; while(StringUtils.isNotEmpty(line = reader.readLine())){ // 2 切割 String[] fields = line.split("\t"); // 3 缓存数据到集合 pdMap.put(fields[0], fields[1]); } // 4 关流 reader.close(); } Text k = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取一行 String line = value.toString(); // 2 截取 String[] fields = line.split("\t"); // 3 获取产品id String pId = fields[1]; // 4 获取商品名称 String pdName = pdMap.get(pId); // 5 拼接 k.set(line + "\t"+ pdName); // 6 写出 context.write(k, NullWritable.get()); } }
标签:his 行合并 rac efi 华为 tsp puts 文件 负载
原文地址:https://www.cnblogs.com/lovemeng1314/p/11762041.html