标签:bzoj haoi2008 计算几何 两圆交点 余弦定理
题目大意:给出一些圆盘,他们按照时间顺序相互覆盖,问最后的到的图形的可见圆周的周长是多少。
前言:円盘反对!让我们一起团结起来!赶走円盘!
思路:对于每一个圆盘,只要扫描在它后面出现的圆与它交的部分的并,总周长-相交的并就是剩下能看见的圆周的长度,然后累加到答案中。
对于两个圆的交,我们可以用一个有序数对(x,y)以弧度为单位来表示,这样所有的xy都在0~2π区间之内。求角度就利用余弦定理,见下图:
#include <cmath> #include <cstdio> #include <cstring> #include <iomanip> #include <iostream> #include <algorithm> #define PI acos(-1.0) #define MAX 1010 using namespace std; struct Point{ double x,y; Point(double _ = .0,double __ = .0):x(_),y(__) {} Point operator -(const Point &a)const { return Point(x - a.x,y - a.y); } void Read() { scanf("%lf%lf",&x,&y); } }; struct Circle{ Point o; double r; void Read() { scanf("%lf",&r); o.Read(); } }circle[MAX]; struct Interval{ double st,ed; Interval(double _ = .0,double __ = .0):st(_),ed(__) {} bool operator <(const Interval &a)const { if(st == a.st) return ed < a.ed; return st < a.st; } }interval[MAX]; int circles,cnt; double ans; inline double Calc(const Point &p1,const Point &p2) { return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y)); } inline void InsertInterval(const Circle &a,const Circle &b) { double dis = Calc(a.o,b.o); if(dis > a.r + b.r) return ; if(dis < a.r - b.r) return ; if(dis < b.r - a.r) { interval[++cnt] = Interval(.0,2.0 * PI); return ; } Point u = b.o - a.o; double alpha = atan2(u.y,u.x) + PI; double detla = acos((a.r * a.r + dis * dis - b.r * b.r) / (2.0 * a.r * dis)); if(alpha - detla < 0) { interval[++cnt] = Interval(alpha - detla + 2.0 * PI,2.0 * PI); interval[++cnt] = Interval(0,alpha + detla); } else if(alpha + detla > 2.0 * PI) { interval[++cnt] = Interval(alpha - detla,2.0 * PI); interval[++cnt] = Interval(0,alpha + detla - 2.0 * PI); } else interval[++cnt] = Interval(alpha - detla,alpha + detla); } int main() { cin >> circles; for(int i = 1; i <= circles; ++i) circle[i].Read(); for(int i = circles; i; --i) { cnt = 0; for(int j = i + 1; j <= circles; ++j) InsertInterval(circle[i],circle[j]); sort(interval + 1,interval + cnt + 1); double start = .0,end = .0; double length = .0; for(int j = 1; j <= cnt; ++j) if(interval[j].st > end) length += end - start,start = interval[j].st,end = interval[j].ed; else end = max(end,interval[j].ed); length += end - start; length = PI * 2.0 - length; ans += length * circle[i].r; } cout << fixed << setprecision(3) << ans << endl; return 0; }
BZOJ 1043 HAOI 2008 下落的圆盘 计算几何
标签:bzoj haoi2008 计算几何 两圆交点 余弦定理
原文地址:http://blog.csdn.net/jiangyuze831/article/details/40580789