码迷,mamicode.com
首页 > 其他好文 > 详细

[詹兴致矩阵论习题参考解答]习题1.12

时间:2014-10-29 10:42:35      阅读:151      评论:0      收藏:0      [点我收藏+]

标签:style   color   sp   on   bs   amp   ad   size   nbsp   

12. (Sherman-Morrison-Woodbury 公式) 设 $A\in M_n$, $B,C\in M_{n,k}$ 使得 $I+C^*A^{-1}B$ 可逆, 其中 $I$ 是单位阵. 证明 $A+BC^*$ 可逆且 $$\bex (A+BC^*)^{-1} =A^{-1} -A^{-1}B (I+C^*A^{-1}B)^{-1}C^*A^{-1}. \eex$$

 

 

证明: $$\beex \bea &\quad (A+BC^*)\sez{A^{-1} -A^{-1}B (I+C^*A^{-1}B)^{-1}C^*A^{-1}}\\ &=I+BC^*A^{-1} -(A+BC^*)A^{-1}B(I+C^*A^{-1}B)^{-1}C^*A^{-1}\\ &=I+BC^*A^{-1} -(I+BC^*A^{-1})\sez{(I+C^*A^{-1}B)B^{-1}}^{-1}C^*A^{-1}\\ &=I+BC^*A^{-1} -(I+BC^*A^{-1})(B^{-1}+C^*A^{-1})^{-1}C^*A^{-1}\\ &=I+BC^*A^{-1} -(I+BC^*A^{-1})\sez{B^{-1}(I+BC^*A^{-1})}^{-1}C^*A^{-1}\\ &=I+BC^*A^{-1} -BC^*A^{-1}\\ &=0. \eea \eeex$$

[詹兴致矩阵论习题参考解答]习题1.12

标签:style   color   sp   on   bs   amp   ad   size   nbsp   

原文地址:http://www.cnblogs.com/zhangzujin/p/4058542.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!