码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 3591 The trouble of Xiaoqian(多重背包+01背包)

时间:2014-10-29 10:50:09      阅读:254      评论:0      收藏:0      [点我收藏+]

标签:acm   algorithm   dp   算法   

HDU 3591 The trouble of Xiaoqian(多重背包+01背包)

http://acm.hdu.edu.cn/showproblem.php?pid=3591

题意:

       有一个具有n种货币的货币系统, 每种货币的面值为val[i]. 现在小杰手上拿着num[1],num[2],…num[n]个第1种,第2种…第n种货币去买价值为T(T<=20000)的商品, 他给售货员总价值>=T的货币,然后售货员(可能,如果小杰给的钱>T, 那肯定找钱)找钱给他. 售货员每次总是用最少的硬币去找钱给小杰. 现在的问题是: 小杰买价值T的商品时, 他给售货员的硬币数目+售货员找他的硬币数目最少等于多少?

分析:

       我们令dp1[j]==x表示小杰给售货员价值j的硬币时, 需要最少x个硬币. 我们令dp2[j]==x表示售货员给小杰价值j的硬币时, 需要最少x个硬币.

       那么前一个问题就是一个多重背包问题(因为小杰的硬币有限度), 而第2个问题是完全背包问题(售货员硬币无限).

       最终我们所求为:  min( dp1[T+i]+dp2[i]) 其中 i属于[0,20000-T].

      

       对于第一个多重背包问题:

       我们令dp1[i][j]==x表示用前i种硬币构成j金钱时, 最少需要x个硬币.

       初始化: dp1全为INF且dp1[0][0]=0.

       对于第i种硬币, 我们要分情况处理:

       如果val[i]*num[i]>=20000, 那么就做一次完全背包.

       如果val[i]*num[i]<20000, 那么就把该物品看出新的k+1种物品,然后做k+1次01背包.

       最终我们所求为dp1[n][j]这维数组就是我们之前说的dp1[j].

      

       对于第二个完全背包问题:

       我们令dp2[i][j]==x表示用前i种硬币构成j金钱时, 最少需要x个硬币.

       初始化: dp2全为INF 且dp2[0][0]=0.

       状态转移: dp2[i][j] = min( dp2[i-1][j] , dp2[i][j-val[i]]+1 )     //sum是求和

       前者表示第i种货币一个都不用, 后者表示第i种货币至少用1个.

       最终所求: dp2[n][j]这维数组是我们上面所求的dp2[j].

 

       最终让i从T+1到20000遍历一边, 找出min( dp1[T] , dp1[i]+dp2[i-T] )的值.

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 1e8
const int maxn=100+5;

int n;//n种货币
int T;//商品金额
int val[maxn];//每种货币面值
int num[maxn];//每种货币数目
int dp1[20000+5];
int dp2[20000+5];

//1次01背包过程
void ZERO_ONE_PACK(int *dp,int cost,int sum)
{
    for(int i=20000;i>=cost;i--)
        dp[i] = min(dp[i],dp[i-cost]+sum);//注意这里是+sum,而不是+1
}

//1次完全背包过程
void COMPLETE_PACK(int *dp,int cost)
{
    for(int i=cost;i<=20000;i++)
        dp[i] = min(dp[i],dp[i-cost]+1);
}

//1次多重背包过程
void MULTIPLY_PACK(int *dp,int cost,int sum)
{
    if(cost*sum>=20000)
    {
        COMPLETE_PACK(dp,cost);
        return ;
    }

    int k=1;
    while(k<sum)
    {
        ZERO_ONE_PACK(dp,cost*k,k);
        sum-=k;
        k*=2;
    }
    ZERO_ONE_PACK(dp,cost*sum,sum);
}

int main()
{
    int kase=0;
    while(scanf("%d%d",&n,&T)==2)
    {
        //注意退出,否则WA
        if(n==0 && T==0) break;

        //读取输入
        for(int i=1;i<=n;i++)
            scanf("%d",&val[i]);
        for(int i=1;i<=n;i++)
            scanf("%d",&num[i]);

        //初始化
        for(int i=0;i<=20000;i++)
            dp1[i]=dp2[i]=INF;
        dp1[0]=dp2[0]=0;

        //递推
        for(int i=1;i<=n;i++)
            MULTIPLY_PACK(dp1,val[i],num[i]);
        for(int i=1;i<=n;i++)
            COMPLETE_PACK(dp2,val[i]);

        //输出结果
        int ans=dp1[T];
        for(int i=T+1;i<=20000;i++)
            ans=min(ans, dp1[i]+dp2[i-T]);

        printf("Case %d: %d\n",++kase,ans==INF?-1:ans);
    }
    return 0;
}

HDU 3591 The trouble of Xiaoqian(多重背包+01背包)

标签:acm   algorithm   dp   算法   

原文地址:http://blog.csdn.net/u013480600/article/details/40582487

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!