标签:依次 rip 之间 optimize algo out mes getc des
从求联通块出发根本没做法,于是考虑连通块里面的边
对于一个询问\([l,r]\),一条边的左端点\(≥l\)且右端点\(≤r\)才在这个区间的点之间
于是对于边和询问排序,依次把边加入树状数组,然后查询当前询问区间里的边条数就知道了联通块个数
#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 200005
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
using namespace std;
ll tr[MAXN];
ll n,q;
struct edge
{
ll x,y;
}a[MAXN];
struct inquiry
{
ll x,y,z,ans;
}b[MAXN];
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline ll lowbit(ll x){return x&(-x);}
inline bool cmp(edge a,edge b){return a.y<b.y;}
inline bool cmpp(inquiry a,inquiry b){return a.y<b.y;}
inline bool cmppp(inquiry a,inquiry b){return a.z<b.z;}
inline void modify(ll x,ll y){while (x<=n)tr[x]+=y,x+=lowbit(x);}
inline ll query(ll x){ll y=0;while (x)y+=tr[x],x-=lowbit(x);return y;}
inline ll get(ll x,ll y){return query(y)-query(x-1);}
int main()
{
freopen("icekingdom.in","r",stdin);
//freopen("icekingdom.out","w",stdout);
n=read(),q=read();
fo(i,1,n-1)
{
ll x=read(),y=read();
a[i].x=min(x,y),a[i].y=max(x,y);
}
sort(a+1,a+n,cmp);
fo(i,1,q)b[i].x=read(),b[i].y=read(),b[i].z=i;
sort(b+1,b+q+1,cmpp);ll j=1;
fo(i,1,q)
{
while (j<n && b[i].y>=a[j].y)modify(a[j++].x,1);
b[i].ans=b[i].y-b[i].x+1-get(b[i].x,b[i].y);
}
sort(b+1,b+q+1,cmppp);
fo(i,1,q)printf("%lld\n",b[i].ans);
return 0;
}
标签:依次 rip 之间 optimize algo out mes getc des
原文地址:https://www.cnblogs.com/horizonwd/p/11780583.html