标签:过程 tar ++ 表示 -- 队列 状态 字典 这一
题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4345
数据范围:略。
题解:
由于$k$的范围问题,我们很容易想到优先队列。
至于从每个状态怎么往下一个转移就是这个题的精髓。
我们先考虑第一问:
第一问没有字典序的限制,我们把所有的数按照从小到大排序。
堆里维护二元组$(Sum, id)$表示这种选取方式的和位$Sum$,最大下标为$id$。
它可以转移到$(Sum - a_{id} + a_{id+1}, id+1)$和$(Sum + a_{id + 1}, id + 1)$。
这一想是显然的,但是不咋好想...有点超级钢琴的味道。
下面我们考虑第二问:
第二问我们爆搜即可,想求出来当前下标(不排序)到最后一个数这个区间内,小于当前剩余和的最小下标的数是啥,然后暴力搜下去即可。
这个过程可以用线段树维护。
至于复杂度为什么是对的?因为我们每时每刻都保证了所有的枚举和都是小于第一问的值的,即使枚举到了第一问的值也在接受范围内。
言外之意我们枚举的每一个值,都是前$k-1$中的一个。
代码:
#include <bits/stdc++.h>
#define ls p << 1
#define rs p << 1 | 1
#define N 1000010
using namespace std;
typedef long long ll;
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0;
char c = nc();
while (c < 48) {
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x;
}
priority_queue <pair<ll, int> > q;
int a[N], b[N], Same, mn[N << 2];
ll ans[N];
inline void pushup(int p) {
mn[p] = min(mn[ls], mn[rs]);
}
void build(int l, int r, int p) {
if (l == r) {
mn[p] = b[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, ls), build(mid + 1, r, rs);
pushup(p);
}
int query(int x, ll y, int l, int r, int p) {
if (x <= l) {
if (mn[p] > y) {
return 0;
}
if (l == r) {
return l;
}
}
int mid = (l + r) >> 1;
if (x <= mid) {
int mdl = query(x, y, l, mid, ls);
if (mdl) {
return mdl;
}
}
return query(x, y, mid + 1, r, rs);
}
int top, st[N], n, k;
void dfs(int p, ll re) {
if (!Same) {
return;
}
if (!re) {
Same -- ;
if (!Same) {
for (int i = 1; i <= top; i ++ ) {
printf("%d ", st[i]);
}
puts("");
}
return;
}
for (int i = p + 1; i <= n; i ++ ) {
i = query(i, re, 1, n, 1);
if (i) {
st[ ++ top] = i;
dfs(i, re - b[i]);
top -- ;
}
else {
break;
}
}
}
int main() {
n = rd(), k = rd() - 1;
for (int i = 1; i <= n; i ++ ) {
a[i] = b[i] = rd();
}
sort(a + 1, a + n + 1);
q.push(make_pair(-a[1], 1));
for (int i = 1; i <= k; i ++ ) {
ans[i] = -q.top().first;
int x = q.top().second;
q.pop();
if (x < n) {
q.push(make_pair(-(ans[i] - a[x] + a[x + 1]), x + 1));
q.push(make_pair(-(ans[i] + a[x + 1]), x + 1));
}
}
// for (int i = 1; i <= k; i ++ ) {
// printf("%lld ", ans[i]);
// }
// puts("");
cout << ans[k] << endl ;
for (int i = k; i; i -- ) {
if (ans[i] != ans[k]) {
break;
}
Same ++ ;
}
// cout << Same << endl ;
build(1, n, 1);
dfs(0, ans[k]);
return 0;
}
[bzoj4345][POI2016]Korale_堆_贪心_线段树_dfs
标签:过程 tar ++ 表示 -- 队列 状态 字典 这一
原文地址:https://www.cnblogs.com/ShuraK/p/11795638.html