码迷,mamicode.com
首页 > 其他好文 > 详细

一些例子

时间:2014-05-16 00:10:31      阅读:502      评论:0      收藏:0      [点我收藏+]

标签:style   blog   class   c   ext   color   

  在这一节,我们用MCMC框架来考察几个例子。

  一、和共轭凸函数的关系

  bubuko.com,布布扣MMbubuko.com,布布扣 是函数p: \mathbb{R}^n \mapsto [-\infty, \infty]p:Rbubuko.com,布布扣nbubuko.com,布布扣?[?,]bubuko.com,布布扣 的上境图,易知此时有\begin{align*} w^* = p( \boldsymbol{0} ) \end{align*}

\begin{align*} q(\boldsymbol{\mu}) = \inf_{(\boldsymbol{u}  ,w) \in epi(p)} \{ w + \boldsymbol{\mu}^\top \boldsymbol{u}  \} = \inf_{ \{ (\boldsymbol{u}  ,w) | p(\boldsymbol{u} ) \leq w \} } \{ w + \boldsymbol{\mu}^\top \boldsymbol{u}  \}, \end{align*}
w p(\boldsymbol{u} ) 替换可得\begin{align*} q(\boldsymbol{\mu}) = \inf_{ \boldsymbol{u}  \in \mathbb{R}^n } \{ p(\boldsymbol{u} ) + \boldsymbol{\mu}^\top \boldsymbol{u}  \} = - \sup_{ \boldsymbol{u}  \in \mathbb{R}^n } \{ (-\boldsymbol{\mu})^\top \boldsymbol{u}  - p(\boldsymbol{u} ) \} = -p^*(-\boldsymbol{\mu}). \end{align*}
于是\begin{align*} q^* = \sup_{\boldsymbol{\mu} \in \mathbb{R}^n} q(\boldsymbol{\mu}) = \sup_{\boldsymbol{\mu} \in \mathbb{R}^n} \{ 0 \cdot (- \boldsymbol{\mu}) - p^*(-\boldsymbol{\mu}) \} = p^{**}( \boldsymbol{0} ), \end{align*}
由此易知,若p = p^{**} (即p 是正常闭凸函数),则有w^* = q^* ,如右图所示。

  二、一般的对偶优化

  考虑最小化函数f: \mathbb{R}^n \mapsto [-\infty, \infty] ,引入函数F: \mathbb{R}^{n+r} \mapsto [-\infty, \infty] 使得\begin{align} \label{equ: general optimization duality f} f(\boldsymbol{x}) = F(\boldsymbol{x}, \boldsymbol{0} ), \ \forall \boldsymbol{x} \in \mathbb{R}^n. \end{align}

设函数p: \mathbb{R}^r \mapsto [-\infty, \infty] 定义如下:\begin{align} \label{equ: general optimization duality p} p(\boldsymbol{u} ) = \inf_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x},\boldsymbol{u}), \end{align}
这里\boldsymbol{u} 可以看成是一个扰动项,p(\boldsymbol{u} ) 是原函数经过扰动后的最优解,当\boldsymbol{u}  = \boldsymbol{0} 时,p( \boldsymbol{0} ) 就是原函数的最优解,因为显然有\begin{align*} p(\boldsymbol{0} ) = \inf_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}, \boldsymbol{0} ) = \inf_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}). \end{align*}
M p 的上境图,易知此时有\begin{align*} w^* = p( \boldsymbol{0} ) = \inf_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}, \boldsymbol{0} ) = \inf_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}). \end{align*}
\begin{align*}q(\boldsymbol{\mu}) = \inf_{(\boldsymbol{u}  ,w) \in epi(p)} \{ w + \boldsymbol{\mu}^\top \boldsymbol{u}  \} = \inf_{ \{ (\boldsymbol{u}  ,w) | p(\boldsymbol{u} ) \leq w \} } \{ w + \boldsymbol{\mu}^\top \boldsymbol{u}  \} = \inf_{ \boldsymbol{u}  \in \mathbb{R}^r } \{ p(\boldsymbol{u} ) + \boldsymbol{\mu}^\top \boldsymbol{u}\}, \end{align*}
p(\boldsymbol{u} ) F(\boldsymbol{x}, \boldsymbol{u} ) 替换可得\begin{align*} q(\boldsymbol{\mu})  = \inf_{ (\boldsymbol{x}, \boldsymbol{u} ) \in \mathbb{R}^{n+r} } \{ F(\boldsymbol{x}, \boldsymbol{u} ) + \boldsymbol{\mu}^\top \boldsymbol{u}  \} = - \sup_{ (\boldsymbol{x}, \boldsymbol{u} ) \in \mathbb{R}^{n+r} } \{ (-\boldsymbol{\mu})^\top \boldsymbol{u}  - F(\boldsymbol{x}, \boldsymbol{u} ) \} = - F^*(\boldsymbol{0} , -\boldsymbol{\mu}), \end{align*}
于是\begin{align*} q^* = \sup_{\boldsymbol{\mu} \in \mathbb{R}^r} q(\boldsymbol{\mu}) = \sup_{\boldsymbol{\mu} \in \mathbb{R}^r} \{ -F^*(\boldsymbol{0} , -\boldsymbol{\mu}) \} = - \inf_{\boldsymbol{\mu} \in \mathbb{R}^r} F^*(\boldsymbol{0} , -\boldsymbol{\mu}) = - \inf_{\boldsymbol{\mu} \in \mathbb{R}^r} F^*(\boldsymbol{0} , \boldsymbol{\mu}), \end{align*}
由此易知,若想强对偶成立,应有\begin{align*} \inf_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = - \inf_{\boldsymbol{\mu} \in \mathbb{R}^r} F^*(\boldsymbol{0} , \boldsymbol{\mu}). \end{align*}

  三、含有不等式约束的优化

  式(\ref{equ: general optimization duality f} )和式(\ref{equ: general optimization duality p} )中F p 的不同选择可以得到不同的对偶问题,考虑含有不等式约束的优化问题:\begin{align} \label{equ: optimization with inequality constraints} \begin{split} \min_{\boldsymbol{x}} & \ f(\boldsymbol{x}) \\ \mbox{s.t.} & \ \boldsymbol{x} \in X, \ \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{0}. \end{split} \end{align}

其中X \mathbb{R}^n 的非空子集,f: X \mapsto \mathbb{R} g_j: X \mapsto \mathbb{R} 是给定函数。引入扰动约束集合\begin{align*}C_{\boldsymbol{u} } = \{ \boldsymbol{x} \in X \ | \ \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{u}  \}, \ \boldsymbol{u}  \in \mathbb{R}^r. \end{align*}
和函数\begin{align*} F(\boldsymbol{x}, \boldsymbol{u} ) = \begin{cases} f(\boldsymbol{x})  & \boldsymbol{x} \in C_{\boldsymbol{u} }, \\ \infty & \boldsymbol{x} \not \in C_{\boldsymbol{u} }. \end{cases} \end{align*}
显然对于\forall \boldsymbol{x} \in C_{ \boldsymbol{0} } F(\boldsymbol{x}, \boldsymbol{0} ) = f(\boldsymbol{x}) \begin{align*} p(\boldsymbol{u} ) = \inf_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}, \boldsymbol{u} ) = \inf_{\boldsymbol{x} \in X, \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{u} } f(\boldsymbol{x}), \end{align*}
我们称之为原始函数,易知\begin{align*} w^* = p(\boldsymbol{0} ) = \inf_{\boldsymbol{x} \in X, \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{0} } f(\boldsymbol{x}). \end{align*}

  另一方面,\begin{align} \label{equ: Lagrangian function} q(\boldsymbol{\mu}) = \inf_{ \boldsymbol{u}  \in \mathbb{R}^r } \left\{ p(\boldsymbol{u} ) + \boldsymbol{\mu}^\top \boldsymbol{u}  \right\} = \inf_{\boldsymbol{x} \in X, \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{u} } \left\{ f(\boldsymbol{x}) + \boldsymbol{\mu}^\top \boldsymbol{u}  \right\} = \begin{cases} \inf_{\boldsymbol{x} \in X} \left\{ f(\boldsymbol{x}) + \boldsymbol{\mu}^\top \boldsymbol{g}(\boldsymbol{x}) \right\} & \boldsymbol{\mu} \geq \boldsymbol{0}, \\ - \infty & otherwise. \end{cases}\end{align}

我们称之为对偶函数Lagrangian函数

  例4.2.1[线性规划的对偶]:考虑如下形式的线性规划:\begin{align*} \min_{\boldsymbol{x}} & \ \boldsymbol{c}^\top \boldsymbol{x} \\ \mbox{s.t.} & \ \boldsymbol{a}_j^\top \boldsymbol{x} \geq b_j, j = 1, \dots, r. \end{align*}

其中\boldsymbol{c} \in \mathbb{R}^n \boldsymbol{a}_j \in \mathbb{R}^n b_j \in \mathbb{R} j = 1, \dots, r 。于是由式(\ref{equ: Lagrangian function} )知对于\boldsymbol{\mu} \geq \boldsymbol{0} \begin{align*} q(\boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ \boldsymbol{c}^\top \boldsymbol{x} + \sum_{j=1}^r \mu_j (b_j - \boldsymbol{a}_j^\top \boldsymbol{x}) \right\} = \begin{cases} \boldsymbol{\mu}^\top \boldsymbol{b} & \sum_{j=1}^r \mu_j \boldsymbol{a}_j = \boldsymbol{c}, \\ -\infty & otherwise. \end{cases} \end{align*}
对于其它的\boldsymbol{\mu} \in \mathbb{R}^n q(\boldsymbol{\mu}) = -\infty ,因此对偶问题为\begin{align*} \max_{\boldsymbol{\mu}} & \ \boldsymbol{\mu}^\top \boldsymbol{b} \\ \mbox{s.t.} & \ \sum_{j=1}^r \mu_j \boldsymbol{a}_j = \boldsymbol{c}, \ \boldsymbol{\mu} \geq \boldsymbol{0}. \end{align*}

  四、增广Lagrangian对偶

  依然考虑问题(\ref{equ: optimization with inequality constraints} ),和之前相同,引入函数\begin{align*} F_c(\boldsymbol{x}, \boldsymbol{u} ) = \begin{cases} f(\boldsymbol{x}) + \frac{c}{2} \| \boldsymbol{u}  \|^2  & \boldsymbol{x} \in C_{\boldsymbol{u} }, \\ \infty & \boldsymbol{x} \not \in C_{\boldsymbol{u} }. \end{cases} \end{align*}

其中c 是一个正数。显然对于\forall \boldsymbol{x} \in C_{ \boldsymbol{0} } F(\boldsymbol{x}, \boldsymbol{0} ) = f(\boldsymbol{x}) \begin{align*} p_c(\boldsymbol{u} ) = \inf_{\boldsymbol{x} \in \mathbb{R}^n} F_c(\boldsymbol{x}, \boldsymbol{u} ) = \inf_{\boldsymbol{x} \in X, \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{u} } \left\{ f(\boldsymbol{x}) + \frac{c}{2} \| \boldsymbol{u}  \|^2 \right\}, \end{align*}
易知\begin{align*} w^* = p_c(\boldsymbol{0} ) = \inf_{\boldsymbol{x} \in X, \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{0} } f(\boldsymbol{x}). \end{align*}
即最小公共点没有改变。

  另一方面,对偶函数\begin{align*} q_c(\boldsymbol{\mu})  = \inf_{ \boldsymbol{u}  \in \mathbb{R}^r } \{ p_c(\boldsymbol{u} ) + \boldsymbol{\mu}^\top \boldsymbol{u}  \} = \inf_{\boldsymbol{x} \in X, \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{u} } \left\{ f(\boldsymbol{x}) + \boldsymbol{\mu}^\top \boldsymbol{u}  + \frac{c}{2} \| \boldsymbol{u}  \|^2 \right\}, \end{align*}

对于固定的\boldsymbol{x} \in X ,上式的下确界可以通过优化\boldsymbol{u} 的每一维依次得到,对于第j 维,\begin{align*} \min_{u_j} & \ \mu_j u_j + \frac{c}{2} u_j^2 \\ \mbox{s.t.} & \ g_j(\boldsymbol{x}) \leq u_j. \end{align*}
易知最优解为\begin{align*} g_j^+(\boldsymbol{x}, \boldsymbol{\mu}, c) = \max \left\{ -\frac{\mu_j}{c}, g_j(\boldsymbol{x}) \right\}, \ j = 1, \dots, r, \end{align*}
\begin{align} \label{equ: augmented Lagrangian function} q_c(\boldsymbol{\mu})  = \inf_{\boldsymbol{x} \in X} \left\{ f(\boldsymbol{x}) + \boldsymbol{\mu}^\top g^+(\boldsymbol{x}, \boldsymbol{\mu}, c) + \frac{c}{2} \| g^+(\boldsymbol{x}, \boldsymbol{\mu}, c) \|^2 \right\}, \end{align}
其中g^+(\boldsymbol{x}, \boldsymbol{\mu}, c) 的第j 维是g_j^+(\boldsymbol{x}, \boldsymbol{\mu}, c)

  式(\ref{equ: augmented Lagrangian function} )称作增广Lagrangian函数,相较于式(\ref{equ: Lagrangian function} ),增广Lagrangian函数多引入了最后那个二次项,这使得它多了些优异的性质,例如它常常是实值函数(当f g_j 都是连续函数且X 是紧集时),有时甚至是可微的。

  五、极大极小问题

  设函数\phi: X \times Z \mapsto R ,其中X Z 分别是\mathbb{R}^n \mathbb{R}^m 的非空子集,则极大极小问题可以形式化为:\begin{align*} \min_{\boldsymbol{x}} & \ \sup_{\boldsymbol{z} \in Z} \phi(\boldsymbol{x}, \boldsymbol{z}) \\ \mbox{s.t.} & \ \boldsymbol{x} \in X. \end{align*}

\begin{align*} \max_{\boldsymbol{z}} & \ \inf_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{z}) \\ \mbox{s.t.} & \ \boldsymbol{z} \in Z. \end{align*}
一个有趣的问题是在什么条件下有极大极小等式\begin{align*} \sup_{\boldsymbol{z} \in Z} \inf_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{z}) = \inf_{\boldsymbol{x} \in X} \sup_{\boldsymbol{z} \in Z} \phi(\boldsymbol{x}, \boldsymbol{z}). \end{align*}
成立,且相应的极值都能取到,这在零和博弈和对偶优化理论里都是很常见的问题。

  引入函数p: \mathbb{R}^m \mapsto [-\infty, \infty] \begin{align} \label{equ: minimax perturbation function} p(\boldsymbol{u} ) = \inf_{\boldsymbol{x} \in X} \sup_{\boldsymbol{z} \in Z} \{ \phi(\boldsymbol{x}, \boldsymbol{z}) - \boldsymbol{u} ^\top \boldsymbol{z} \}, \end{align}

这里p(\boldsymbol{u} ) 可以看成是一个扰动函数,线性项\boldsymbol{u} ^\top \boldsymbol{z} 是扰动项,设M p 的上境图,那么\begin{align*} w^* = p( \boldsymbol{0} ) = \inf_{\boldsymbol{x} \in X} \sup_{\boldsymbol{z} \in Z} \phi(\boldsymbol{x}, \boldsymbol{z}).\end{align*}

  下面研究q^* ,在此先引入函数闭凹包的概念。函数f: X \mapsto [-\infty, \infty] 的闭凹包为\begin{align*} cl(conc(f)) = - cl(conv(-f)). \end{align*}

结合命题1.3.13知\begin{align} \label{equ: concave closure} \sup_{\boldsymbol{x} \in X} f(\boldsymbol{x}) = - \inf_{\boldsymbol{x} \in X} -f(\boldsymbol{x}) = - \inf_{\boldsymbol{x} \in \mathbb{R}^n} cl(conv(-f))(\boldsymbol{x}) = \sup_{\boldsymbol{x} \in \mathbb{R}^n} - cl(conv(-f))(\boldsymbol{x}) = \sup_{\boldsymbol{x} \in \mathbb{R}^n} cl(conc(f))(\boldsymbol{x}). \end{align}

  命题4.2.2:设函数\phi: X \times Z \mapsto R ,其中X Z 分别是\mathbb{R}^n \mathbb{R}^m 的非空子集。若对于\forall \boldsymbol{x} \in X -cl(conc(\phi))(\boldsymbol{x}, \cdot) 是正常函数,考虑之前的MCMC框架,设函数p 的定义如式(\ref{equ: minimax perturbation function} ),M = epi(p) ,那么对偶函数为\begin{align*} q(\boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in X} cl(conc(\phi))(\boldsymbol{x}, \boldsymbol{\mu}). \end{align*}

  证明:将p(\boldsymbol{u} ) 重新写为\begin{align*} p(\boldsymbol{u} ) = \inf_{\boldsymbol{x} \in X} p_{\boldsymbol{x}}(\boldsymbol{u} ), \end{align*}

其中p_{\boldsymbol{x}}(\boldsymbol{u} ) = \sup_{\boldsymbol{z} \in Z} \{ \phi(\boldsymbol{x}, \boldsymbol{z}) - \boldsymbol{u} ^\top \boldsymbol{z} \}, \boldsymbol{x} \in X 。将\phi(\boldsymbol{x}, \boldsymbol{z}) 看作\boldsymbol{z} 的函数,易知有\begin{align*} - \phi^*(\boldsymbol{x}, \boldsymbol{z}) = \sup_{\boldsymbol{z} \in Z} \{ \boldsymbol{u} ^\top \boldsymbol{z} + \phi(\boldsymbol{x}, \boldsymbol{z}) \} = p_{\boldsymbol{x}}(-\boldsymbol{u} ), \end{align*}
p_{\boldsymbol{x}}(-\cdot) - \phi(\boldsymbol{x}, \cdot) 的共轭函数,由共轭定理(4)知
\begin{align} \label{equ: minimax duality} p_{\boldsymbol{x}}^*(-\cdot) = - \phi^{**}(\boldsymbol{x}, \cdot) = cl(conv(-\phi)) (\boldsymbol{x}, \cdot) = - cl(conc(\phi)) (\boldsymbol{x}, \cdot), \end{align}
于是\begin{align*} p_{\boldsymbol{x}}^*(-\boldsymbol{\mu}) = - cl(conc(\phi)) (\boldsymbol{x}, \boldsymbol{\mu}). \end{align*}
因此对于任意\boldsymbol{\mu} \in \mathbb{R}^m \begin{align*} q(\boldsymbol{\mu}) & = \inf_{\boldsymbol{u}  \in \mathbb{R}^m} \{ p(\boldsymbol{u} ) + \boldsymbol{u} ^\top \boldsymbol{\mu} \} \\ & = \inf_{\boldsymbol{u}  \in \mathbb{R}^m}\inf_{\boldsymbol{x} \in X} \{ p_{\boldsymbol{x}}(\boldsymbol{u} ) + \boldsymbol{u} ^\top \boldsymbol{\mu} \} \\ & = \inf_{\boldsymbol{x} \in X} \inf_{\boldsymbol{u}  \in \mathbb{R}^m} \{ p_{\boldsymbol{x}}(\boldsymbol{u} ) + \boldsymbol{u} ^\top \boldsymbol{\mu} \} \\ & = \inf_{\boldsymbol{x} \in X} \left\{ - \sup_{\boldsymbol{u}  \in \mathbb{R}^m} \{ \boldsymbol{u} ^\top (-\boldsymbol{\mu}) - p_{\boldsymbol{x}}(\boldsymbol{u} )\} \right \} \\ & = \inf_{\boldsymbol{x} \in X} \{ -p_{\boldsymbol{x}}^*(-\boldsymbol{\mu}) \} \\ & = \inf_{\boldsymbol{x} \in X} cl(conc(\phi)) (\boldsymbol{x}, \boldsymbol{\mu}). \end{align*}

  -cl(conc(\phi))(\boldsymbol{x}, \cdot) 是正常函数的条件是必需的,否则式(\ref{equ: minimax duality} )中的第二个等号可能不成立。此外我们还可得到如下一些结论:

  1. 一般来说,我们有\begin{align*} \sup_{\boldsymbol{z} \in Z} \inf_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{z}) \leq q^* \leq w^* = \inf_{\boldsymbol{x} \in X} \sup_{\boldsymbol{z} \in Z} \phi(\boldsymbol{x}, \boldsymbol{z}), \end{align*}
    其中第一个不等号成立是因为\begin{align*} q(\boldsymbol{\mu}) = \inf_{\boldsymbol{u}  \in \mathbb{R}^m} \{ p(\boldsymbol{u} ) + \boldsymbol{u} ^\top \boldsymbol{\mu} \} = \inf_{\boldsymbol{u}  \in \mathbb{R}^m} \inf_{\boldsymbol{x} \in X} \sup_{\boldsymbol{z} \in Z} \{ \phi(\boldsymbol{x}, \boldsymbol{z}) + \boldsymbol{u} ^\top(\boldsymbol{\mu} - \boldsymbol{z}) \} \geq \inf_{\boldsymbol{u}  \in \mathbb{R}^m} \inf_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{\mu}), \end{align*}
    于是有\begin{align*} q^* = \sup_{\boldsymbol{\mu} \in \mathbb{R}^m} q(\boldsymbol{\mu}) \geq \sup_{\boldsymbol{\mu} \in \mathbb{R}^m} \inf_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{\mu}) \geq \sup_{\boldsymbol{z} \in Z} \inf_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{z}). \end{align*}
    第二个等号是弱对偶定理,由此可见,若极大极小等式成立,则有强对偶成立。
  2. \begin{align*} \phi(\boldsymbol{x}, \boldsymbol{z}) = cl(conc(\phi)) (\boldsymbol{x}, \boldsymbol{z}), \forall \boldsymbol{x} \in X, \boldsymbol{z} \in Z \end{align*}
    成立且对于\forall \boldsymbol{x} \in X -cl(conc(\phi)) (\boldsymbol{x}, \cdot) 是正常函数,则有\begin{align*} q^* = \sup_{\boldsymbol{z} \in \mathbb{R}^m} q(\boldsymbol{z}) = \sup_{\boldsymbol{z} \in \mathbb{R}^m} \inf_{\boldsymbol{x} \in X} cl(conc(\phi))(\boldsymbol{x}, \boldsymbol{z}) = \sup_{\boldsymbol{z} \in Z} \inf_{\boldsymbol{x} \in X} \phi(\boldsymbol{x}, \boldsymbol{z}), \end{align*}
    这意味着若\phi = cl(conc(\phi)) ,则极大极小等式等价于强对偶关系。
  3. 由式(\ref{equ: concave closure} )知\sup_{\boldsymbol{z} \in Z} \phi(\boldsymbol{x}, \boldsymbol{z}) = \sup_{\boldsymbol{z} \in \mathbb{R}^m} cl(conc(\phi)) (\boldsymbol{x}, \boldsymbol{z}) ,于是\begin{align*} w^* = \inf_{\boldsymbol{x} \in X} \sup_{\boldsymbol{z} \in Z} \phi(\boldsymbol{x}, \boldsymbol{z}) = \inf_{\boldsymbol{x} \in X} \sup_{\boldsymbol{z} \in \mathbb{R}^m} cl(conc(\phi)) (\boldsymbol{x}, \boldsymbol{z}). \end{align*}
    若对于\forall \boldsymbol{x} \in X -cl(conc(\phi)) (\boldsymbol{x}, \cdot) 是正常函数,由命题4.2.2知\begin{align*} q^* = \sup_{\boldsymbol{z} \in \mathbb{R}^m} q(\boldsymbol{z}) = \sup_{\boldsymbol{z} \in \mathbb{R}^m} \inf_{\boldsymbol{x} \in X} cl(conc(\phi)) (\boldsymbol{x}, \boldsymbol{z}) \end{align*}
    由此可知w^* q^* 分别是cl(conc(\phi)) \inf \sup 值和\sup \inf 值。

一些例子,布布扣,bubuko.com

一些例子

标签:style   blog   class   c   ext   color   

原文地址:http://www.cnblogs.com/murongxixi/p/3730357.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!