标签:def oid fir 限制 推导 turn inline root 距离
\(n\)个点的树,边权均为\(1\),求任意一个点\(x\)满足\(M\)条限制。
第\(i\)条限制为“\(x\)到节点\(A_i\)的距离加上\(x\)到节点\(B_i\)的距离不超过\(D_i\)”。
- 对于每一个限制都构造一个变量\(W_i=max(0,\frac {dep[A_i]+dep[B_i]-D_i}2)\)
- 可以推导得,\(x\)节点满足:\(\forall i,dep[x]\ge w_i\)。
- 那么我们就只需要满足\(dep[x]\ge max\{ W_i\}\)。
- 找到满足条件的深度最浅的点\(x\),一定是最优的点。
- 如果限制条件都在\(x\)的子树内,那么一定是满足的,因为下面的限制已经将上面不满足的点都去掉了。
- 如果限制条件都在\(x\)的子树外,那么一定是先通过\(x\)点,然后再到子树内的节点。
- 如果限制条件分别在子树内和子树外,那么这个点\(x\)一定是在两个限制条件节点的简单路径上。
- 那么我们找到这个深度最小的节点,然后再做一遍深搜,就可以得到答案了。
#include <bits/stdc++.h>
#define FI first
#define SE second
#define REP(i, s, t) for (int i = s; i <= t; i++)
#define PER(i, s, t) for (int i = s; i >= t; i--)
#define pb push_back
#define mp make_pair
using namespace std;
template <class T> void chkmax(T& x, T y) { x = max(x, y); }
template <class T> void chkmin(T& x, T y) { x = min(x, y); }
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
inline char gc() {
static char buf[1 << 25], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 25, stdin), p1 == p2) ? EOF : *p1++;
}
template <class T>
void re(T& x) {
x = 0; char ch = 0; int f = 1;
for (; !isdigit(ch); ch = gc()) if (ch == '-') f = -1;
for (; isdigit(ch); ch = gc()) x = x * 10 + ch - 48;
x *= f;
}
const int N = 1e6 + 5;
int n, m, mx, lim;
vector<int> G[N];
struct Query {
int u, v, x, w;
} qry[N];
int dep[N][4];
void dfs(int u, int fff, int opt) {
for (auto v : G[u]) {
if (v == fff)
continue;
dep[v][opt] = dep[u][opt] + 1;
dfs(v, u, opt);
}
}
int main() {
re(n), re(m);
for (int i = 1; i < n; i++) {
int u, v; re(u), re(v);
G[u].pb(v), G[v].pb(u);
}
dfs(1, 0, 0);
for (int i = 1; i <= m; i++) {
re(qry[i].u), re(qry[i].v), re(qry[i].x);
qry[i].w = max(0, dep[qry[i].u][0] + dep[qry[i].v][0] - qry[i].x);
chkmax(mx, qry[i].w);
}
for (int i = 1; i <= m; i++)
if (qry[i].w == mx) {
dfs(qry[i].u, 0, 1), dfs(qry[i].v, 0, 2);
lim = qry[i].x;
break;
}
int root = 0;
for (int i = 1; i <= n; i++)
if (dep[i][1] + dep[i][2] <= lim && (!root || dep[root][0] > dep[i][0]))
root = i;
dfs(root, 0, 3);
for (int i = 1; i <= m; i++)
if (dep[qry[i].u][3] + dep[qry[i].v][3] > qry[i].x) {
printf("NO\n");
return 0;
}
printf("%d\n", root);
return 0;
}
标签:def oid fir 限制 推导 turn inline root 距离
原文地址:https://www.cnblogs.com/chhokmah/p/11830246.html