标签:des style blog io os ar java for sp
eddy
题目大意:任意一个数x,都可以被分解为几个素数(可以相同)相乘的形式,现在给你一个数x,
把它分解为几个素数相乘的形式。
思路:这里x的规模最大为65535,所以用简单的素性判断方法直接暴力也可以过。网上贴的
代码大多简单,这里贴一个用【Miller Rabin素数测试】+【Pollar Rho整数分解】来做的代码
#include<stdio.h> #include<stdlib.h> #include<time.h> #include<math.h> #include<algorithm> using namespace std; #define MAX_VAL (pow(2.0,60)) //miller_rabbin素性测试 __int64 mod_mul(__int64 x,__int64 y,__int64 mo) { __int64 t,T,a,b,c,d,e,f,g,h,v,ans; T = (__int64)(sqrt(double(mo)+0.5)); t = T*T - mo; a = x / T; b = x % T; c = y / T; d = y % T; e = a*c / T; f = a*c % T; v = ((a*d+b*c)%mo + e*t) % mo; g = v / T; h = v % T; ans = (((f+g)*t%mo + b*d)% mo + h*T)%mo; while(ans < 0) ans += mo; return ans; } __int64 mod_exp(__int64 num,__int64 t,__int64 mo) { __int64 ret = 1, temp = num % mo; for(; t; t >>=1,temp=mod_mul(temp,temp,mo)) if(t & 1) ret = mod_mul(ret,temp,mo); return ret; } bool miller_rabbin(__int64 n) { if(n == 2) return true; if(n < 2 || !(n&1)) return false; int t = 0; __int64 a,x,y,u = n-1; while((u & 1) == 0) { t++; u >>= 1; } for(int i = 0; i < 50; i++) { a = rand() % (n-1)+1; x = mod_exp(a,u,n); for(int j = 0; j < t; j++) { y = mod_mul(x,x,n); if(y == 1 && x != 1 && x != n-1) return false; x = y; } if(x != 1) return false; } return true; } //PollarRho大整数因子分解 __int64 minFactor; __int64 gcd(__int64 a,__int64 b) { if(b == 0) return a; return gcd(b, a % b); } __int64 PollarRho(__int64 n, int c) { int i = 1; srand(time(NULL)); __int64 x = rand() % n; __int64 y = x; int k = 2; while(true) { i++; x = (mod_exp(x,2,n) + c) % n; __int64 d = gcd(y-x,n); if(1 < d && d < n) return d; if(y == x) return n; if(i == k) { y = x; k *= 2; } } } __int64 ans[1100],cnt; void getSmallest(__int64 n, int c) { if(n == 1) return; if(miller_rabbin(n)) { ans[cnt++] = n; return; } __int64 val = n; while(val == n) val = PollarRho(n,c--); getSmallest(val,c); getSmallest(n/val,c); } int main() { __int64 X; while(~scanf("%I64d",&X)) { cnt = 0; getSmallest(X,200); sort(ans, ans+cnt); for(int i = 0; i < cnt; i++) { if(i!=0) printf("*%I64d",ans[i]); else printf("%I64d",ans[i]); } printf("\n"); } return 0; }
HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
标签:des style blog io os ar java for sp
原文地址:http://blog.csdn.net/lianai911/article/details/40586241