码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习高阶训练营知识点一览<二>

时间:2019-11-12 15:57:17      阅读:174      评论:0      收藏:0      [点我收藏+]

标签:pool   条件   阶段   激活   案例   学习   model   log   估计   

第三阶段 无监督学习与序列模型

【核心知识点】

- K-means、GMM以及EM

- 层次聚类,DCSCAN,Spectral聚类算法

- 隐变量与隐变量模型、Partition函数

- 条件独立、D-Separation、Markov性质

- HMM以及基于Viterbi的Decoding

- Forward/Backward算法

- 基于EM算法的参数估计

- 有向图与无向图模型区别

- Log-Linear Model,逻辑回归,特征函数

- MEMM与Label Bias问题

- Linear CRF以及参数估计

第四阶段 深度学习

【核心知识点】

- 神经网络与激活函数

- BP算法、卷积层、Pooling层、全连接层

- 卷积神经网络、常用的CNN结构

- Dropout与Batch Normalization

- SGD、Adam、Adagrad算法

- RNN与梯度消失、LSTM与GRU

- Seq2Seq模型与注意力机制

- Word2Vec, Elmo, Bert, XLNet

- 深度学习中的调参技术

- 深度学习与图嵌入(Graph Embedding)

- Translating Embedding (TransE)

- Node2Vec

- Graph Convolutional Network

- Graph Neural Network

- Dynamic Graph Embedding

【部分案例讲解】

- 基于Seq2Seq和注意力机制的机器翻译

- 基于TransE和GCN的知识图谱推理

- 基于CNN的人脸关键点检测

机器学习高阶训练营知识点一览<二>

标签:pool   条件   阶段   激活   案例   学习   model   log   估计   

原文地址:https://www.cnblogs.com/jimchen1218/p/11842564.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!