码迷,mamicode.com
首页 > 其他好文 > 详细

Flink 操作链与任务槽

时间:2019-11-13 22:27:32      阅读:504      评论:0      收藏:0      [点我收藏+]

标签:ret   pack   man   execution   manage   链接   rac   多少   复用   

Operator Chains(操作链)

  • Flink出于分布式执行的目的,将operator的subtask链接在一起形成task(类似spark中的管道)。

  • 每个task在一个线程中执行。

  • 将operators链接成task是非常有效的优化:它可以减少线程与线程间的切换和数据缓冲的开销,并在降低延迟的同时提高整体吞吐量。

  • 链接的行为可以在编程API中进行指定,详情请见代码OperatorChainTest。

  • 开启操作链 和 禁用操作链的对比图(默认开启):

    技术图片

    技术图片

  • Flink默认会将多个operator进行串联,形成任务链(task chain)

  • 注意: task chain 可以理解为就是 operator chain 只是不同场景下,称呼不同。

  • 我们也可以禁用任务链,让每个operator形成一个task。

  • StreamExecutionEnvironment.disableOperatorChaining() 这个方法会禁用整条工作链

  • 操作链其实就是类似spark的pipeline管道模式,一个task可以执行同一个窄依赖中的算子操作。

  • 我们也可以细粒度的控制工作链的形成,比如调用dataStreamSource.map(...).startNewChain(),但不能使用dataStreamSource.startNewChain()

  • dataStreamSource.filter(...).map(...).startNewChain().map(...),需要注意的是,当这样写时相当于source和filter组成一条链,两个map组成一条链。

  • 即在filter和map之间断开,各自形成单独的链。

  • 代码:

    package com.ronnie.flink.stream.test;
    
    import org.apache.flink.api.common.functions.MapFunction;
    import org.apache.flink.api.java.tuple.Tuple2;
    import org.apache.flink.streaming.api.datastream.DataStreamSource;
    import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    
    /**
     *  开启与禁用工作链时,输出的结果不一样。
     *  当开启工作链时(默认启动),operator map1与map2 组成一个task.
     *     此时task运行时,对于hello,flink 这两条数据是:
     *     先打印 hello ---- 1 , hello->1 ---- 2
     *     后打印 flink ---- 1 , flink->1 ---- 2
     *  当禁用工作链时,operator map1与map2 分别在两个task中执行
     *     此时task运行时,对于hello,flink 这两条数据是:
     *     先打印 hello ---- 1 , flink ---- 1
     *     后打印 hello->1 ---- 2  , flink->1 ---- 2
     *
     *  注:操作链类似spark的管道,一个task执行多个的算子.
     */
    public class OperatorChainTest {
    
        public static final String[] WORDS = new String[] {
                "hello",
                "flink",
                "spark",
                "hbase"
        };
    
        public static void main(String[] args) {
            // 设置执行环境, 类似spark中初始化sparkContext一样
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            env.setParallelism(1);
    
            // 关闭操作链..
            env.disableOperatorChaining();
    
            DataStreamSource<String> dataStreamSource = env.fromElements(WORDS);
    
            SingleOutputStreamOperator<String> pairStream = dataStreamSource.map(new MapFunction<String, String>() {
                @Override
                public String map(String value) throws Exception {
                    System.err.println(value + " ---- 1");
                    return value + "->1";
                }
            }).map(new MapFunction<String, String>() {
                @Override
                public String map(String value) throws Exception {
                    System.err.println(value + " ---- 2");
                    return value + "->2";
                }
            });
    
            // 还可以控制更细粒度的任务链,比如指明从哪个operator开始形成一条新的链
            // someStream.map(...).startNewChain(),但不能使用someStream.startNewChain()。
            try {
                env.execute();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
    

Task slots(任务槽)

技术图片

  • TaskManager 是一个 JVM 进程,并会以独立的线程来执行一个task或多个subtask。
  • 为了控制一个 TaskManager 能接受多少个 task,Flink 提出了 Task Slot 的概念。
  • Flink 中的计算资源通过 Task Slot 来定义。每个 task slot 代表了 TaskManager 的一个固定大小的资源子集。
  • 例如,一个拥有3个slot的 TaskManager,会将其管理的内存平均分成三分分给各个 slot。
  • 将资源 slot 化意味着来自不同job的task不会为了内存而竞争,而是每个task都拥有一定数量的内存储备。
  • 需要注意的是,这里不会涉及到CPU的隔离,slot目前仅仅用来隔离task的内存。
  • 通过调整 task slot 的数量,用户可以定义task之间是如何相互隔离的。
  • 每个 TaskManager 有一个slot,也就意味着每个task运行在独立的 JVM 中。
  • 每个 TaskManager 有多个slot的话,也就是说多个task运行在同一个JVM中。
  • 而在同一个JVM进程中的task,可以共享TCP连接(基于多路复用)和心跳消息,可以减少数据的网络传输。
  • 也能共享一些数据结构,一定程度上减少了每个task的消耗。
  • 如图中所示,5个Task可能会在TaskManager的slots中分布,图中共2个TaskManager,每个有3个slot。

技术图片

Flink 操作链与任务槽

标签:ret   pack   man   execution   manage   链接   rac   多少   复用   

原文地址:https://www.cnblogs.com/ronnieyuan/p/11853287.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!