标签:cells add height 更新 状态 nbsp 合成 -- 背包
(以下均可用一维来写
即只能选择一次的物品装在一定容积的背包中。f[i][j]表示前i件物品在容积为j时的最大价值。
for(int i = 1; i <= n ; i++){
for(int j = v ; j >= 0 ; j--){
if (w[i]<=j )
f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+c[i]);
else
f[i][j]=f[i-1][v];
}
}
有需要注意的的地方:
i物品(体积,价值)\j容积 | 0 | 1 | 2 | 3 | 4 | 5 |
1(2,3) | 0 | 2 | 3 | 5 | 6 | 7 |
2(1,2) | 0 | 2 | 2 | 4 | 6 | 6 |
3(3,4) | 0 | 0 | 2 | 2 | 2 | 2 |
4(2,2) | 0 | 0 | 0 | 0 | 0 | 0 |
if (w[i]<=j )
f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+c[i]);
else
f[i][j]=f[i-1][v];
----------------------------------------------------------------------------不得不说,想要说明白真的好难,自己理解有限,表达能力也差,只能说个半解吧
即一件物品可以无数次选择。
可以和01背包的思想结合,即将一件物品拆成多件(虽说是无数次选择,但毕竟背包容积有限)
仍然可以按照01背包的思想来解决:令f[i][v]表示前i个物品放入容积为v背包最大权值
伪代码:
for i=1..N
for v=0..V//不同于01背包①
f[v]=max(f[v],f[v-w[i]]+c[i])(v>=w[i],1<=i<=n)/ /补充:二维时还有区别----F[i, v] = max(F[i -1, v],F[ i ,v - Ci] +Wi) ②
标签:cells add height 更新 状态 nbsp 合成 -- 背包
原文地址:https://www.cnblogs.com/becase/p/11858758.html