标签:复合 sum strong exp 例子 ble 情况 amp prope
Ordered pair(序偶)
当且仅当a1 = a2并且b1 = b2时, 才有序偶对(a1, b1)=(a2, b2)
Cartesian product(笛卡尔积)
如果A和B是两个非空集,我们将积集或笛卡尔积A×B定义为具有a∈A和b∈B的所有有序对(a,b)的集合
A×B= {(a,b)| a∈A并且b∈B}
m元笛卡尔积
Partitions(划分)
如果R属于A×B并且(a,b)∈R,我们就说a与b有关,写作:a R b。如果a与R无关,写作:a R b。
通常,A和B是相等的。 在这种情况下,我们经常说R属于A×A是A上的关系。
Proof of (a):
If y ∈ R(A1)
then x R y for some x ∈ A1.
Since A 1 ? A 2, x ∈ A 2.
Thus, y ∈ R(A2)
Q.E.D.
Proof of (b):
Proof of (c):
证明技巧:Apply a relevant definition to a generic object.(将相关定义应用于通用对象。)即举反例。
给出全集U和U上的子集A的二元关系R,则有以下性质:
Definition: [re](自反的定义)
Note:
Definition : [ir](反自反的定义)
Note:
Example1:
Definition: [Sy](对称的定义)
Note:
Definition: [As](非对称的定义)
Note:
Definition: [Ats](反对称的定义)
Note:
Example2:
Note:
Definition: [tr](传递的定义)
Note:
Example3:
Note:R1 ⊕ R2 = (R1-R2) ∪ (R2-R1)
则The composition of R and S(R和S的复合关系),记作SoR,定义为:
如果a∈A并且c∈C,那么有:a SoR c 当且仅当 存在b∈B,使得a R b and b S c.
设R是从A到B的关系,S是从B到C的关系。那么,如果A1是A的子集,我们有:
(SoR)(A1) = S(R(A1))
令R为A到A的关系,则Rn,n=1,2,3…定义有:R1=R and Rn+1=RnoR
A到A的关系R是transitive(传递的) <==> Rn?R,n=1,2,3…
Use the fact that R2 ? R
if (a, b) ∈ R and (b, c) ∈ R, then by the definition of composition, (a, c) ∈ R2.
Because R2 ? R, this means that (a, c) ∈ R.
Hence, R is transitive.
Q.E.D.
P所有可能的元素为:
(1,1) | (1,2) | (1,3) | ... | (1,n) |
---|---|---|---|---|
(2,1) | (2,2) | (2,3) | ... | (2,n) |
(3,1) | (3,2) | (3,3) | ... | (3,n) |
... | ... | ... | ... | (3,n) |
(n,1) | (n,2) | (n,3) | ... | (n,n) |
满足对称性定义的最小元素组:{(1,1)}, {(2,2)}, ......{(n,n)}这n个单元素集合和{(1,2), (2,1)}, ......{(n-1,n), (n, n-1)}这(nn-n)/2个元素组
故:sum = 2n+(n2-n)/2 = 2n(n+1)/2个
P所有可能的元素为:
(1,1) | (1,2) | (1,3) | ... | (1,n) |
---|---|---|---|---|
(2,1) | (2,2) | (2,3) | ... | (2,n) |
(3,1) | (3,2) | (3,3) | ... | (3,n) |
... | ... | ... | ... | (3,n) |
(n,1) | (n,2) | (n,3) | ... | (n,n) |
满足反对称定义的最小元素组:{(1,1)}, {(2,2)}, ......{(n,n)}共n个,(这些元素可选可不选,共2n种)
对于除了这些元素之外的其他元素,分为矩阵对角线的左下与左上,分别有2n(n-1)/2个,对于特定的某个元素,如(a,b),a≠b,满足反对称定义的元素组有:{(a,b)}, {(b,a)}, {?}共3种,故而这些元素一共有3n(n-1)/2种选法故:sum = 2n * 3n(n-1)/2个
相比较②,区别在于对角线元素不能选,其余一致
故:sum = 3n(n-1)/2个
对角线元素不可选,其余nn-n个元素无差别选取
故:sum = 2n(n-1)个
要满足自反,则对角线元素必须全取,同时要对称,则(a,b)和(b,a)组成一组元,可取可不取,共n(n-1)/2组
故: sum = 2n(n-1)/2个
P所有可能的元素为:
(1,1) | (1,2) | (1,3) | ... | (1,n) |
---|---|---|---|---|
(2,1) | (2,2) | (2,3) | ... | (2,n) |
(3,1) | (3,2) | (3,3) | ... | (3,n) |
... | ... | ... | ... | (3,n) |
(n,1) | (n,2) | (n,3) | ... | (n,n) |
意味着对角线元素既不能全部取到,又不能全部不取
即:其补集为对角线元素全取或者全不取,总数为:2*2n(n-1)个故:sum = 2n2-2*2n(n-1)个
摘自离散9.1的47
标签:复合 sum strong exp 例子 ble 情况 amp prope
原文地址:https://www.cnblogs.com/SpicyArticle/p/11868593.html