码迷,mamicode.com
首页 > 其他好文 > 详细

PyTorch DataLoader()使用

时间:2019-11-16 00:34:14      阅读:372      评论:0      收藏:0      [点我收藏+]

标签:部分   shuf   就是   方便   模型   shuffle   ORC   pytorch   作用   

DataLoader的作用:通常在训练时我们会将数据集分成若干小的、随机的batch,这个操作当然可以手动操作,但是PyTorch里面为我们提供了API让我们方便地从dataset中获得batch,DataLoader就是干这事儿的。
先看官方文档的描述,包括了每个参数的定义:
技术图片
它的本质是一个可迭代对象,一般的操作是:

  1. 创建一个dataset对象
  2. 创建一个DataLoader对象
  3. 遍历这个DataLoader对象,将data, label加载到模型中进行训练
#一个粗略的示意
dataset = torchvision.datasets.MNIST()  #从torchvision这个包里获得一个dataset对象
train_iter = torch.utils.data.DataLoader(dataset, batch_size = args.batch_size, shuffle = True)#创建DataLoader对象
for epoch in num(epochs):#将数据加载到模型之中
    for data, label in train_iter:
        ...

DataLoader还有更多的细节,但现在还没有遇到,所以先记下这部分。
这个博客关于这个话题讲得不错,参考 https://www.cnblogs.com/ranjiewen/p/10128046.html

PyTorch DataLoader()使用

标签:部分   shuf   就是   方便   模型   shuffle   ORC   pytorch   作用   

原文地址:https://www.cnblogs.com/patrolli/p/11870141.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!