码迷,mamicode.com
首页 > 其他好文 > 详细

【大数据技术能力提升_4】logistic学习

时间:2019-11-17 23:49:28      阅读:105      评论:0      收藏:0      [点我收藏+]

标签:方法   学习   alpha   构造   概率论   不同的   ref   matrix   lin   

logistic学习

标签(空格分隔): logistic sigmod函数 逻辑回归 分类


前言:
??整体逻辑回归比线性回归难理解点,其还需要《概率论与数理统计》中“二项分布”知识点的理解。
??二项分布的公式:\(P(X=k)=\left\lgroup\begin{matrix}n\cr p \end{matrix}\right\rgroup p^k (1-p)^{n-k},0<p<1,k=0,1,\cdots,n.\)
??表示在n重伯努利A实验中,发生K的概率为多少。跟n次硬币实验一致。
简介:
??logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。
Regression 常规步骤

  1. 寻找h函数(即预测函数)
  2. 构造J函数(损失函数)
  3. 想办法使得J函数最小并求得回归参数(θ)

公式:

  1. Logistic函数(或称为Sigmoid函数),函数形式为:\(g(z)=\frac{1}{1+e^x}\)
  2. 线性边界函数:z=\(\theta^Tx=\theta_0x_0+\theta_1x_1+\cdots+\theta_nx_n=\sum_{i=0}^{n}{\theta_ix_i}\)
  3. 构造预测函数:\(h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{\theta^Tx}}\)
    注:函数h(x)的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:
    P(y=1│x;θ)=h_θ (x)
    P(y=0│x;θ)=1-h_θ (x)
  4. 构造损失函数:\(J(\theta)=-\frac{1}{m}\left[\begin{matrix}\sum_{i=1}^{m}{(y_ilogh_{\theta}(x_i)+(1-y_i)log(1-h_{\theta}(x_i)))}\end{matrix}\right]\)

如果 y = 0, 则最小似然函数为:\(-log(1-h_{\theta}(x))\)
如果 y = 1, 则最大似然函数为:\(-logh_{\theta}(x)\)

  1. 求解逻辑归回的方法有很多种,比如常用的“梯度下降法”和“牛顿法”
    5.1 梯度下降法,是通过对\(J(\theta)\)进行一阶求导来寻找下降方法,并且用迭代的方法来更新参数,更新公式:
    \(\theta_j:=\theta_j-\alpha\frac{\delta}{\delta_{\theta_j}}J(\theta)=\theta_j-\frac{1}{m}\sum_{i=1}^{m}({h_{\theta}(x_i)-y_i)x^j_i}\)
    5.2 牛顿法,是在现有极小点估计值的附近对 f(x) 做二阶泰勒展开,进而找到极小点的下一个估计值。

PS:本篇只讲梯度下降法,牛顿法后面再加,另外具体函数推导方式会在后面以图片的形式加上来
参考文档:
机器学习算法--逻辑回归原理介绍:https://blog.csdn.net/chibangyuxun/article/details/53148005
【机器学习】逻辑回归(非常详细):https://zhuanlan.zhihu.com/p/74874291

【大数据技术能力提升_4】logistic学习

标签:方法   学习   alpha   构造   概率论   不同的   ref   matrix   lin   

原文地址:https://www.cnblogs.com/CQ-LQJ/p/11879051.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!