码迷,mamicode.com
首页 > 其他好文 > 详细

hive的优化整理

时间:2019-11-20 22:04:02      阅读:119      评论:0      收藏:0      [点我收藏+]

标签:opera   常用   否则   lse   orm   run   sel   jvm重用   class   


1)MapJoin
如果不指定MapJoin或者不符合MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join。容易发生数据倾斜。可以用MapJoin把小表全部加载到内存在map端进行join,避免reducer处理。

2)行列过滤
列处理:在SELECT中,只拿需要的列,如果有,尽量使用分区过滤,少用SELECT *。
行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在Where后面,那么就会先全表关联,之后再过滤。

3)采用分桶技术

4)采用分区技术

5)合理设置Map数
(1)通常情况下,作业会通过input的目录产生一个或者多个map任务。
主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小。

(2)是不是map数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。

(3)是不是保证每个map处理接近128m的文件块,就高枕无忧了?
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。

针对上面的问题2和3,我们需要采取两种方式来解决:即减少map数和增加map数;

6)小文件进行合并
在Map执行前合并小文件,减少Map数:CombineHiveInputFormat具有对小文件进行合并的功能(系统默认的格式)。HiveInputFormat没有对小文件合并功能。

7)合理设置Reduce数
Reduce个数并不是越多越好
(1)过多的启动和初始化Reduce也会消耗时间和资源;
(2)另外,有多少个Reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;
在设置Reduce个数的时候也需要考虑这两个原则:处理大数据量利用合适的Reduce数;使单个Reduce任务处理数据量大小要合适;

8)常用参数
// 输出合并小文件
SET hive.merge.mapfiles = true; -- 默认true,在map-only任务结束时合并小文件

SET hive.merge.mapredfiles = true; -- 默认false,在map-reduce任务结束时合并小文件

SET hive.merge.size.per.task = 268435456; -- 默认256M

SET hive.merge.smallfiles.avgsize = 16777216; -- 当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge

9)JVM重用

10)推测执行

11)严格模式

通过设置属性hive.mapred.mode值为默认是非严格模式nonstrict 。开启严格模式需要修改hive.mapred.mode值为strict,开启严格模式可以禁止3种类型的查询

(1)对于分区表,除非where语句中含有分区字段过滤条件来限制范围,否则不允许执行。
(2)对于使用了order by语句的查询,要求必须使用limit语句
(3)限制笛卡尔积的查询。

<property>

    <name>hive.mapred.mode</name>

    <value>strict</value>

    <description>

      The mode in which the Hive operations are being performed.

      In strict mode, some risky queries are not allowed to run. They include:

        Cartesian Product.

        No partition being picked up for a query.

        Comparing bigints and strings.

        Comparing bigints and doubles.

        Orderby without limit.

</description>

</property>

 

 

 

 

 

 

 

 

 

 

 

12)并行执行
set hive.exec.parallel=true; //打开任务并行执行
set hive.exec.parallel.thread.number=16; //同一个sql允许最大并行度,默认为8。

13)压缩

hive的优化整理

标签:opera   常用   否则   lse   orm   run   sel   jvm重用   class   

原文地址:https://www.cnblogs.com/yumengfei/p/11900747.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!