标签:技术 play lower closed open 数字 ace span for
A.
随便判一下,注意边界
1 #include<bits/stdc++.h> 2 #define ll long long 3 using namespace std; 4 int T; 5 int n,x,a,b; 6 int main() 7 { 8 cin>>T; 9 while(T--) 10 { 11 cin>>n>>x>>a>>b; 12 if(a>b)swap(a,b); 13 int ans=b-a; 14 ans+=min(a-1,x),x-=min(a-1,x); 15 ans+=min(n-b,x),x-=min(n-b,x); 16 cout<<ans<<endl; 17 } 18 }
B.
考虑单组最多\(\log\)步,暴力跳就完事了
1 #include<bits/stdc++.h> 2 #define ll long long 3 using namespace std; 4 int T; 5 ll x,y; 6 map<ll,bool> vis; 7 int main() 8 { 9 scanf("%d",&T); 10 while(T--) 11 { 12 vis.clear(); 13 scanf("%I64d%I64d",&x,&y); 14 while(!vis[x]) 15 { 16 if(x>=y)break; 17 vis[x]=1; 18 if(x&1)x--; 19 x=x*3/2; 20 } 21 if(x>=y)puts("YES"); 22 else puts("NO"); 23 } 24 }
C.
最短的答案一定存在于两个相同的数字中间夹着一堆数的情况
显然中间如果有两个相同的数那一定更优
我们对每个数记录一下出现位置扫一遍就行了
1 #include<bits/stdc++.h> 2 #define maxn 200005 3 using namespace std; 4 int T,n; 5 int a[maxn]; 6 vector<int> v[maxn]; 7 int main() 8 { 9 scanf("%d",&T); 10 while(T--) 11 { 12 scanf("%d",&n); 13 for(int i=1;i<=n;++i)v[i].clear(); 14 for(int i=1;i<=n;++i)scanf("%d",&a[i]),v[a[i]].push_back(i); 15 int ans=n+1; 16 for(int i=1;i<=n;++i) 17 { 18 for(int j=1;j<v[i].size();++j)ans=min(ans,v[i][j]-v[i][j-1]+1); 19 } 20 if(ans==n+1)ans=-1; 21 printf("%d\n",ans); 22 } 23 }
D.
对每天能打的怪二分一下长度
然后check就变成了一个区间最值查询
ST表
1 #include<bits/stdc++.h> 2 #define maxn 200005 3 using namespace std; 4 int T,n,m; 5 int st[maxn][20],maxhp[maxn]; 6 struct node 7 { 8 int atk,hp; 9 }a[maxn]; 10 int b[maxn]; 11 bool operator < (node A,node B){return A.atk<B.atk;} 12 void init() 13 { 14 for(int j=1;j<=19;++j) 15 for(int i=1;i+(1<<j)-1<=n;++i)st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]); 16 } 17 int getmax(int l,int r) 18 { 19 int k=log2(r-l+1); 20 return max(st[l][k],st[r-(1<<k)+1][k]); 21 } 22 int main() 23 { 24 scanf("%d",&T); 25 while(T--) 26 { 27 scanf("%d",&n); 28 for(int i=1;i<=n;++i)scanf("%d",&st[i][0]); 29 init(); 30 scanf("%d",&m); 31 for(int i=1;i<=m;++i)scanf("%d%d",&a[i].atk,&a[i].hp); 32 sort(a+1,a+m+1); 33 for(int i=1;i<=m;++i)b[i]=a[i].atk; 34 maxhp[m+1]=0; 35 for(int i=m;i>=1;--i)maxhp[i]=max(maxhp[i+1],a[i].hp); 36 int pos=0,ans=0; 37 while(pos<n) 38 { 39 int l=pos+1,r=n,res=pos; 40 while(l<=r) 41 { 42 int mid=(l+r)>>1; 43 int maxv=getmax(pos+1,mid),len=mid-pos; 44 int x=lower_bound(b+1,b+m+1,maxv)-b; 45 if(maxhp[x]>=len)res=mid,l=mid+1; 46 else r=mid-1; 47 } 48 if(res==pos){ans=-1;break;} 49 ans++;pos=res; 50 } 51 printf("%d\n",ans); 52 } 53 }
E.
\(dp[i][0/1/2]\)表示第\(i\)个位置在哪一段
直接转移一下就完事了
1 #include<bits/stdc++.h> 2 #define maxn 200005 3 using namespace std; 4 int k1,k2,k3,n; 5 int dp[maxn][3],bel[maxn]; 6 int main() 7 { 8 scanf("%d%d%d",&k1,&k2,&k3); 9 for(int x,i=1;i<=k1;++i) 10 { 11 scanf("%d",&x); 12 bel[x]=0; 13 } 14 for(int x,i=1;i<=k2;++i) 15 { 16 scanf("%d",&x); 17 bel[x]=1; 18 } 19 for(int x,i=1;i<=k3;++i) 20 { 21 scanf("%d",&x); 22 bel[x]=2; 23 } 24 n=k1+k2+k3; 25 memset(dp,127/2,sizeof(dp)); 26 dp[0][0]=0; 27 for(int i=0;i<n;++i) 28 { 29 for(int j=0;j<3;++j) 30 { 31 for(int k=j;k<3;++k) 32 { 33 dp[i+1][k]=min(dp[i+1][k],dp[i][j]+((bel[i+1]==k)?0:1)); 34 } 35 } 36 } 37 cout<<min(dp[n][0],min(dp[n][1],dp[n][2]))<<endl; 38 }
F.
考虑折半
把\(30\)位拆成\(15\)和\(15\)
枚举x的后\(15\)位,然后计算出一个表示\(1\)个数的vector塞进map里
然后枚举x的前\(15\)位,在map里统计一下
1 #include<bits/stdc++.h> 2 #define maxn 105 3 using namespace std; 4 int n; 5 int a[maxn],b[maxn]; 6 map< vector<int>,int > mp; 7 int main() 8 { 9 scanf("%d",&n); 10 for(int i=1;i<=n;++i) 11 { 12 scanf("%d",&a[i]); 13 b[i]=a[i]&32767; 14 a[i]>>=15; 15 } 16 for(int S=0;S<32768;++S) 17 { 18 vector<int> A; 19 A.clear(); 20 for(int i=1;i<=n;++i)A.push_back(__builtin_popcount(S^a[i])); 21 if(!mp.count(A))mp[A]=S; 22 } 23 for(int S=0;S<32768;++S) 24 { 25 vector<int> B; 26 B.clear(); 27 for(int i=1;i<=n;++i)B.push_back(-(__builtin_popcount(S^b[i]))); 28 for(int j=0;j<=30;++j) 29 { 30 for(int i=0;i<n;++i)B[i]++; 31 if(mp.count(B)) 32 { 33 int x=S|(mp[B]<<15); 34 cout<<x<<endl; 35 return 0; 36 } 37 } 38 } 39 puts("-1"); 40 }
G.
如果不是多重集的话,那么\(n\)个数形成的集合里选最多的一些集合互不包含就是选\(\frac{n}{2}\)个
现在变成多重集,该结论仍然成立,还是选\(\frac{n}{2}\)个
但是多重集没法直接用组合数计算
那么我们考虑生成函数
对于每种东西来说,\(F(x)=(1+x+x^2+\cdots+x^m)\)
那么所有物品就是一堆这样的生成函数卷起来,然后取\([x^{\frac{n}{2}}] f(x)\)
分治FFT
1 #include<bits/stdc++.h> 2 using namespace std; 3 const int mod = 998244353; 4 #define ll long long 5 const double PI=acos(-1.0); 6 const int maxn=800005; 7 namespace fft 8 { 9 struct num{ 10 double x,y; 11 num() {x=y=0;} 12 num(double x,double y):x(x),y(y){} 13 }; 14 inline num operator+(num a,num b) {return num(a.x+b.x,a.y+b.y);} 15 inline num operator-(num a,num b) {return num(a.x-b.x,a.y-b.y);} 16 inline num operator*(num a,num b) {return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);} 17 inline num conj(num a) {return num(a.x,-a.y);} 18 int base=1; 19 vector<num> roots={{0,0},{1,0}}; 20 vector<int> rev={0,1}; 21 const double PI=acosl(-1.0); 22 void ensure_base(int nbase){ 23 if(nbase<=base) return; 24 rev.resize(1<<nbase); 25 for(int i=0;i<(1<<nbase);i++) 26 rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1)); 27 roots.resize(1<<nbase); 28 while(base<nbase){ 29 double angle=2*PI/(1<<(base+1)); 30 for(int i=1<<(base-1);i<(1<<base);i++){ 31 roots[i<<1]=roots[i]; 32 double angle_i=angle*(2*i+1-(1<<base)); 33 roots[(i<<1)+1]=num(cos(angle_i),sin(angle_i)); 34 } 35 base++; 36 } 37 } 38 void fft(vector<num> &a,int n=-1){ 39 if(n==-1) n=a.size(); 40 assert((n&(n-1))==0); 41 int zeros=__builtin_ctz(n); 42 ensure_base(zeros); 43 int shift=base-zeros; 44 for(int i=0;i<n;i++) 45 if(i<(rev[i]>>shift)) 46 swap(a[i],a[rev[i]>>shift]); 47 for(int k=1;k<n;k<<=1){ 48 for(int i=0;i<n;i+=2*k){ 49 for(int j=0;j<k;j++){ 50 num z=a[i+j+k]*roots[j+k]; 51 a[i+j+k]=a[i+j]-z; 52 a[i+j]=a[i+j]+z; 53 } 54 } 55 } 56 } 57 vector<num> fa,fb; 58 vector<ll> multiply(vector<int> &a, vector<int> &b){ 59 int need=a.size()+b.size()-1; 60 int nbase=0; 61 while((1<<nbase)<need) nbase++; 62 ensure_base(nbase); 63 int sz=1<<nbase; 64 if(sz>(int)fa.size()) fa.resize(sz); 65 for(int i=0;i<sz;i++){ 66 int x=(i<(int)a.size()?a[i]:0); 67 int y=(i<(int)b.size()?b[i]:0); 68 fa[i]=num(x,y); 69 } 70 fft(fa,sz); 71 num r(0,-0.25/sz); 72 for(int i=0;i<=(sz>>1);i++){ 73 int j=(sz-i)&(sz-1); 74 num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r; 75 if(i!=j) fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r; 76 fa[i]=z; 77 } 78 fft(fa,sz); 79 vector<ll> res(need); 80 for(int i=0;i<need;i++) res[i]=fa[i].x+0.5; 81 return res; 82 } 83 vector<int> multiply_mod(vector<int> &a,vector<int> &b,int m,int eq=0){ 84 int need=a.size()+b.size()-1; 85 int nbase=0; 86 while((1<<nbase)<need) nbase++; 87 ensure_base(nbase); 88 int sz=1<<nbase; 89 if(sz>(int)fa.size()) fa.resize(sz); 90 for(int i=0;i<(int)a.size();i++){ 91 int x=(a[i]%m+m)%m; 92 fa[i]=num(x&((1<<15)-1),x>>15); 93 } 94 fill(fa.begin()+a.size(),fa.begin()+sz,num{0,0}); 95 fft(fa,sz); 96 if(sz>(int)fb.size()) fb.resize(sz); 97 if(eq) copy(fa.begin(),fa.begin()+sz,fb.begin()); 98 else{ 99 for(int i=0;i<(int)b.size();i++){ 100 int x=(b[i]%m+m)%m; 101 fb[i]=num(x&((1<<15)-1),x>>15); 102 } 103 fill(fb.begin()+b.size(),fb.begin()+sz,num{0,0}); 104 fft(fb,sz); 105 } 106 double ratio=0.25/sz; 107 num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1); 108 for(int i=0;i<=(sz>>1);i++){ 109 int j=(sz-i)&(sz-1); 110 num a1=(fa[i]+conj(fa[j])); 111 num a2=(fa[i]-conj(fa[j]))*r2; 112 num b1=(fb[i]+conj(fb[j]))*r3; 113 num b2=(fb[i]-conj(fb[j]))*r4; 114 if(i!=j){ 115 num c1=(fa[j]+conj(fa[i])); 116 num c2=(fa[j]-conj(fa[i]))*r2; 117 num d1=(fb[j]+conj(fb[i]))*r3; 118 num d2=(fb[j]-conj(fb[i]))*r4; 119 fa[i]=c1*d1+c2*d2*r5; 120 fb[i]=c1*d2+c2*d1; 121 } 122 fa[j]=a1*b1+a2*b2*r5; 123 fb[j]=a1*b2+a2*b1; 124 } 125 fft(fa,sz);fft(fb,sz); 126 vector<int> res(need); 127 for(int i=0;i<need;i++){ 128 ll aa=fa[i].x+0.5; 129 ll bb=fb[i].x+0.5; 130 ll cc=fa[i].y+0.5; 131 res[i]=(aa+((bb%m)<<15)+((cc%m)<<30))%m; 132 } 133 return res; 134 } 135 vector<int> square_mod(vector<int> &a,int m){ 136 return multiply_mod(a,a,m,1); 137 } 138 }; 139 int n; 140 struct node 141 { 142 int sz; 143 vector<int> x; 144 }; 145 vector<int> A[3000005]; 146 bool operator < (node A,node B) 147 { 148 return A.sz>B.sz; 149 } 150 void solve() 151 { 152 priority_queue<node> pq; 153 for(int i=2;i<=3000000;++i)if(A[i].size()>1) 154 { 155 node u; 156 u.sz=A[i].size(); 157 u.x=A[i]; 158 pq.push(u); 159 } 160 while(!pq.empty()) 161 { 162 vector<int> x=pq.top().x; 163 pq.pop(); 164 if(pq.empty()) 165 { 166 printf("%d\n",x[n/2]); 167 break; 168 } 169 vector<int> y=pq.top().x; 170 pq.pop(); 171 vector<int> z=fft::multiply_mod(x,y,mod); 172 node u; 173 u.sz=z.size(),u.x=z; 174 pq.push(u); 175 } 176 } 177 int main() 178 { 179 scanf("%d",&n); 180 for(int i=1;i<=3000000;++i)A[i].push_back(1); 181 for(int i=1;i<=n;++i) 182 { 183 int x; 184 scanf("%d",&x); 185 A[x].push_back(1); 186 } 187 solve(); 188 }
标签:技术 play lower closed open 数字 ace span for
原文地址:https://www.cnblogs.com/uuzlove/p/11909382.html