码迷,mamicode.com
首页 > 其他好文 > 详细

numba初体验

时间:2019-11-23 09:53:41      阅读:101      评论:0      收藏:0      [点我收藏+]

标签:机器   class   for   pip   官方文档   UNC   guid   uid   效率   

numba初体验

今天在知乎上发现了一个很神奇的包numba,可以用jit的方式大幅提高计算型python代码的效率,一起来看一下


安装

numba的安装方式很简单,使用pip或者anacoda都可以

pip3 install numba

注意:numba仅支持python3.5以上的版本


使用

numba的使用也很简单,使用numba.jit装饰锂电函数就可以了

以下是一个简单的demo

import time
import numba
from functools import wraps


def timeit(f):
    @wraps(f)
    def wrapper(*args, **kwargs):
        enter_time = time.time()
        ret = f(*args, **kwargs)
        print("{}:{}".format(f.__name__, time.time()-enter_time))
        return ret
    return wrapper


@timeit
def fib(n):
    f1 = f2 = 1
    for i in range(1, n):
        f1, f2 = f2, f1 + f2
    return f2


@timeit
@numba.jit
def fib_with_jit(n):
    f1 = f2 = 1
    for i in range(1, n):
        f1, f2 = f2, f1 + f2
    return f2


if __name__ == '__main__':
    fib_with_jit(2000000)   # fib_with_jit:0.11314105987548828
    fib(2000000)    # fib:50.43636465072632

可以看到,使用numba装饰的函数快了大概上百倍。测试过程中还发现,当n比较小时,fib执行的时间比fib_with_jit短很多,但当n逐渐增大时,fib执行时间缓慢增长,而fib_with_jit几乎不变


为什么这么快?

根据官方文档:numba会读取python字节码,结合函数的参数信息,分析和优化代码,然后使用LLVM编译器生成与机器匹配的机器码,之后每次调用函数时直接使用机器码就行了(其实就是JIT技术,与PyPy类似)

官方文档地址:http://numba.pydata.org/numba-doc/latest/user/5minguide.html

numba初体验

标签:机器   class   for   pip   官方文档   UNC   guid   uid   效率   

原文地址:https://www.cnblogs.com/zzliu/p/11914977.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!