码迷,mamicode.com
首页 > 其他好文 > 详细

最大连续子序列之和,最大连续子序列乘积

时间:2014-10-30 01:47:35      阅读:234      评论:0      收藏:0      [点我收藏+]

标签:style   blog   color   ar   使用   for   sp   div   on   

  最大连续子序列之和问题描述为:数组中里有正数也有负数,连续的一个或多个整数组成一个子数组,每个子数组都有一个和,求所有子数组的和的最大值。分析,对数组a进行一遍扫描,sum[i] 为前i个元素中,包含第i个元素且和最大的连续子数组,MaxSum保存当前子数组中最大和,对于a[i+1]来说,sum[i+1] = sum[i]+a[i+1],此时如果sum[i+1]<0,那么sum需要重新赋0,从i+1之后开始累加,如果sum[i+1]>0,那么MaxSum = max(MaxSum, Sum[i+1])。代码如下:

 1 int maxSum(int *nArray, int nSize, int &nBegin, int &nEnd)
 2 {
 3     int nSum = 0, nMaxSum = 0;
 4     int nNewBegin = 0;    //记录新的开始下标
 5     nBegin = nEnd = 0;    //记录最大连续子数组和的起始于结束下标
 6     for(int i=0; i!=nSize; i++)
 7     {
 8  
 9         nSum += nArray[i];
10         if(nSum >= nMaxSum)
11         {
12             nMaxSum = nSum;
13             nBegin = nNewBegin;
14             nEnd = i;
15         }
16         else if(nSum < 0)
17         {
18             nSum = 0;
19             nNewBegin = i+1;
20         }
21     }
22  
23     return nMaxSum;
24 }
25 
26 int _tmain(int argc, _TCHAR* argv[])
27 {
28     int Array[5] = {2, -3, 4, 5, -100};
29     int nBegin = 0, nEnd = 0;
30     int nMaxSum = maxSum(Array, sizeof(Array)/sizeof(*Array), nBegin, nEnd);
31     cout<<nMaxSum<<endl;
32     cout<<"开始下标为["<<nBegin<<"], 结束下标["<<nEnd<<"]"<<endl;
33 
34     return 0;
35 }

  最大连续子序列乘积,问题描述和前面求最大连续子序列之和类似:给一个浮点数序列,取最大乘积连续子串的值。这里需要重点注意的是乘积需要注意正负号,需要考虑到有偶数个的情况,所以计算时,不止要保存当前最大乘积,也要保存当前最小乘积。代码如下:

 1 double maxProduct(double a[], int nLen, int &nBegin, int &nEnd)
 2 {
 3     int nNewBegin = 0;
 4     nBegin = nEnd =0;
 5 
 6     double dCurMax = 1.0f;
 7     double dCurMin = 1.0f;
 8     double dMax = 1.0f;
 9     double dMin = 1.0f;
10     for(int i=0; i!=nLen; i++)
11     {
12         dCurMax *= a[i];
13         dCurMin *= a[i];
14         cout<<"dCurMax = "<<dCurMax<<", dCurMin = "<<dCurMin<<endl;
15         if(dCurMax > dMax)
16         {
17             dMax = dCurMax;
18             nBegin = nNewBegin;
19             nEnd = i;
20         }
21         if(dCurMin > dMax)
22         {
23             dMax = dCurMin;
24             nBegin = nNewBegin;
25             nEnd = i;
26         }
27         if(dCurMax < dMin)
28         {
29             dMin = dCurMax;
30         }
31         if(dCurMin < dMin)
32         {
33             dMin = dCurMin;
34         }
35 
36         if(dCurMax == 0 || dCurMin == 0)
37         {
38             dCurMax = dCurMin = 1;
39             nNewBegin = i+1;
40         }
41 
42         cout<<"dMax = "<<dMax<<", dMin = "<<dMin<<endl;
43         cout<<"begin = "<<nBegin<<", end = "<<nEnd<<endl;
44     }
45 
46     return dMax;
47 }
48 
49 int _tmain(int argc, _TCHAR* argv[])
50 {
51     double a[] = { -2.5, 4, 0, 3, 0.5, 8, -2, -2};
52     int nBegin, nEnd;
53     int max = maxProduct(a, sizeof(a)/sizeof(*a), nBegin, nEnd);
54     cout<<max<<endl;
55     cout<<nBegin<<"  "<<nEnd<<endl;
56 
57     return 0;
58 }

  在网上看到使用动态规划的算法来处理此题目。假设从数组开头 i 到结尾 j 的范围,求出所有元素为结尾的子序列最大值,取其中最大的那个即为所求的最大连续子序列乘积。假设max(i, k)表示从数组 i 开始到 j 结束的范围内,包含 j 作为结尾的最大连续子序列乘积,注意不一定以 i 作为起始,问题可以概括为max = max(max(i, i), max(i, i+1), ……, max(a, k), ……., max(i, j)) 。那么对于max(i, k)后面的max(i, k+1)来说,会有如下几种情况:

  1. max(i, k)和a[k+1]均为正数,且max(i, k)*a[k+1] > max(i, k),那么有 max(i, k+1) = max(i, k) * a[k+1]
  2. max(i, k)和a[k+1]一正一负,如果max(i, k)>0,a[k+1] < 0,那么乘积<0,而max(i, k+1)要包含a[k+1],所以max(i, k+1) = a[k+1],反之亦然
  3. max(i, k)为正数,a[k+1]为负数,不过max(i, k)之前相连的序列里有负数,那么前面包含负数的这个序列,必然是一个前面序列的最小值,此时max(i, k+1) = min(i, k) * a[k+1]

  概括起来,包含第k+1个元素为结尾的序列最大乘积应该取自上述三种情况之一:max(i, k+1) = max(max(i, k) * a[k+1],  a[k+1], min(i, k) * a[k+1])。

  按照同样的道理,我们求得的包含k+1在内结尾的最小乘积序列为:min(i, k+1) = min(min(i, k) * a[k+1], a[k+1], max(i, k) * a[k+1])。

  代码如下:

 1 int maxProduct_DP(double a[], int n)
 2 {
 3     double maxCur = 1.0f;  
 4     double minCur = 1.0f;  
 5     double maxTmp = maxCur;  
 6     double minTmp = minCur;
 7     double result = 0.0f;
 8 
 9     for(int i=0; i!=n; i++)
10     {
11         maxTmp = max(maxCur*a[i], max(a[i], minCur*a[i]));
12         minTmp = min(maxCur*a[i], min(a[i], minCur*a[i]));
13 
14         maxCur = maxTmp;
15         minCur = minTmp;
16 
17         result = max(result, maxCur);
18     }
19 
20     return result;
21 }

 

最大连续子序列之和,最大连续子序列乘积

标签:style   blog   color   ar   使用   for   sp   div   on   

原文地址:http://www.cnblogs.com/Tour/p/4061022.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!