标签:lte 比较 doc python label its reference load cat
一些最常用的数据集如 MNIST、Fashion MNIST、cifar10/100 在 tf.keras.datasets 中就能找到,但对于其它也常用的数据集如 SVHN、Caltech101,tf.keras.datasets 中没有,此时我们可以在 TensorFlow Datasets 中找找看。
tensorflow_datasets 里面包含的数据集列表:https://www.tensorflow.org/datasets/catalog/overview#all_datasets
tensorflow_datasets 安装:pip install tensorflow_datasets
得到 tf.data.Dataset 对象:
import tensorflow as tf
import tensorflow_datasets as tfds
data, info = tfds.load("mnist", with_info=True)
print(info)
train_data, test_data = data['train'], data['test']
assert isinstance(train_data, tf.data.Dataset)
print(train_data)
得到 numpy.ndarray 对象:
import tensorflow_datasets as tfds
# `batch_size=-1`, will return the full dataset as `tf.Tensor`s.
dataset, info = tfds.load("mnist", batch_size=-1, with_info=True)
print(info)
train, test = dataset["train"], dataset["test"]
print(type(train['image']))
train = tfds.as_numpy(train)
print(type(train['image']))
print(train['image'].shape)
print(train['label'].shape)
tf.data.Dataset 进行简单划分验证集可以参考 https://github.com/tensorflow/datasets/issues/665#issuecomment-502409920
如果想对 MNIST 等数据集手动分层随机划分出一个验证集,还是转化成 numpy.ndarray 比较方便,再使用 sklearn 的 train_test_split 方法一行代码就可以搞定。
https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets/catalog/overview#all_datasets
https://github.com/tensorflow/datasets/blob/master/docs/splits.md
【tf.keras】tensorflow datasets,tfds
标签:lte 比较 doc python label its reference load cat
原文地址:https://www.cnblogs.com/wuliytTaotao/p/11920540.html