码迷,mamicode.com
首页 > 其他好文 > 详细

「数学」微积分初步

时间:2019-11-24 09:17:11      阅读:114      评论:0      收藏:0      [点我收藏+]

标签:amp   微积分   积分   sum   $$   array   limits   log   ^c   

这几天比较系统的学了一下微积分和导数(其实是高考课课余没事干和不想在机房颓废。。

 

一、导数

其实就是个变化率的问题。

我们设一个函数$f(x)$的导数为$D[f(x)]$

那么:

$$D[f(x)]=\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$

导数是这样用的。

$$f(x+\Delta x)=f(x)+D[f(x)]\Delta x$$

然后写一些常用的求导公式。

 

1.$$f(x)=ax+b$$

$$\begin{array}{rcl}D[f(x)]&=&\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{ax+b+a\Delta x - (ax+b)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{a\Delta x}{\Delta x}=a\end{array}$$

 

2.$$f(x)=x^n$$

$$\begin{array}{rcl}D[f(x)]&=&\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{(x+\Delta x)^n-x^n}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{\sum\limits_{i=0}^{n}C_n^i x^i{\Delta x}^{n-i}-x^n}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\sum\limits_{i=0}^{n-1}C_n^i{\Delta x}^{n-i-1}x^i\\&=&nx^{n-1}\end{array}$$

 

关于三角函数,我们知道:

$$\lim_{x\rightarrow 0}sin(x)=x$$

$$\lim_{x\rightarrow 0}cos(x)=1$$

 

3.$$f(x)=\sin(ax+b)$$

$$\begin{array}{rcl}D[f(x)]&=&\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{sin(a(x+\Delta x)+b)-sin(ax+b)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{sin(ax+b)cos(a\Delta x)+cos(ax+b)sin(a\Delta x)-sin(ax+b)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{sin(ax+b)-sin(ax+b)+a\Delta x cos(ax+b)}{\Delta x}\\&=&acos(ax+b)\end{array}$$

 

4.$$f(x)=\cos(ax+b)$$

$$\begin{array}{rcl}D[f(x)]&=&\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{cos(a(x+\Delta x)+b)-cos(ax+b)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{cos(ax+b)cos(a\Delta x)-sin(ax+b)sin(a\Delta x)-cos(ax+b)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}-\frac{sin(ax+b)a\Delta x}{\Delta x}\\&=&-asin(ax+b)\end{array}$$

 

我们知道$e$的定义式是:

$$e=\lim_{n\rightarrow \infty}(1+\frac{1}{n})^{n}$$

 

5.$$f(x)=a^x$$

$$\begin{array}{rcl}D[f(x)]&=&\lim_{\Delta x\rightarrow 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{a^x(a^{\Delta x}-1)}{\Delta x}\\&=&\lim_{\Delta x\rightarrow 0}\frac{a^x}{\frac{1}{(a^{\Delta x}-1)}\log_a((a^{\Delta x-1}+1))}\\&=&\lim_{\Delta x\rightarrow 0}\frac{a^x}{{\log_a(1+(a^{\Delta x}-1))}^{\frac{1}{a^{\Delta x}-1}}}\\&=&\lim_{\Delta x\rightarrow 0}\frac{a^x}{\log_a(x)}\\&=&\lim_{\Delta x\rightarrow 0}a^x\ln a\end{array}$$

 

6.导数运算法则:

$$D[cf(x)]=cD[f(x)]$$

$$D[f(x)+g(x)]=D[f(x)]+D[g(x)]$$

$$D[f(x)-g(x)]=D[f(x)]-D[g(x)]$$

加减不证明了。太显然了。。

主要证明一下乘除和复合函数。

$$\begin{array}{rcl}D[f(x)g(x)]&=&\frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x}\\&=&\frac{(f(x)+D[f(x)]\Delta x)(g(x)+D[g(x)](\Delta x))-f(x)g(x)}{\Delta x}\\&=&\frac{f(x)g(x)+f(x)D[g(x)]\Delta x + D[f(x)]g(x)\Delta x - f(x)g(x)}{\Delta x}\\&=&\frac{f(x)D[g(x)]\Delta x + D[f(x)]g(x)\Delta x + D[g(x)]D[f(x)]{\Delta x}^2}{\Delta x}\\&=&D[f(x)]g(x)+f(x)D[g(x)]\end{array}$$

$$\begin{array}{rcl}D[\frac{f(x)}{g(x)}]&=&\frac{\frac{f(x+\Delta x)}{g(x+\Delta x)}-\frac{f(x)}{g(x)}}{\Delta x}\\&=&\frac{\frac{f(x)+D[f(x)]\Delta x}{g(x)+D[g(x)]\Delta x}-\frac{f(x)}{g(x)}}{\Delta x}\\&=&\frac{g(x)(f(x)+D[f(x)]\Delta x)-f(x)(g(x)+D[g(x)]\Delta x)}{(g(x)+D[g(x)]\Delta x)g(x)\Delta x}\\&=&\frac{D[f(x)]g(x)-f(x)D[g(x)]}{g^2(x)+D[g(x)]\Delta x g(x)}\\&=&\frac{D(f(x))g(x)-f(x)D[g(x)]}{g^2(x)}\end{array}$$

设$D[f[g(x)]]$为函数$f$在$g(x)$处的导数,区别于$D[f(g(x))]$,$D[f(g(x))]$为函数$f(g(x))$的导数。

$$\begin{array}{rcl}D[f(g(x))]&=&\frac{f(g(x+\Delta x))-f(g(x))}{\Delta x}\\&=&\frac{f(g(x)+\Delta xg(x))-f(g(x))}{\Delta x}\\&=&\frac{f(g(x))+D[f[g(x)]]\Delta xD[g(x)]-f(g(x))}{\Delta x}\\&=&D[f[g(x)]]D[g(x)]\end{array}$$

 

二、定积分

简单来说定积分用来求一个函数关于某条轴的面积大小。

比如说:

$$\int_a^b f(x)dx$$就是函数$f(x)$关于$x$轴的积分。

 

我们发现定积分的一些基本运算法则。

$$\int_a^b (f(x)+g(x))dx=\int_a^b f(x)dx+\int_a^b g(x)dx$$

$$\int_a^b Cf(x)dx=C\int_a^b f(x)dx$$

$$\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx$$

$$\int_a^a f(x)dx=0$$

$$\int_a^b f(x)dx=-\int_b^a f(x)dx$$

 

微积分基本定理:

设$$D[F(x)]=f(x)$$

那么:

$$\int_a^b f(x)dx=F(b)-F(a)=F(x)\mid_a^b$$

「数学」微积分初步

标签:amp   微积分   积分   sum   $$   array   limits   log   ^c   

原文地址:https://www.cnblogs.com/Lrefrain/p/11919596.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!