码迷,mamicode.com
首页 > 其他好文 > 详细

[USACO10HOL]赶小猪题解

时间:2019-11-24 10:17:27      阅读:74      评论:0      收藏:0      [点我收藏+]

标签:print   inline   scan   rac   ret   double   mes   using   https   

题目链接

貌似没有卡我精度?

这道题跟这道的思路和做法都挺像的,也是期望+高斯消元

\(f_u\)为一个点期望的经过次数,那么我们可以发现,炸弹在每个点爆炸的概率其实就是\(f_u*p/q\),求出每个点的\(f_i\)即可得到最终的答案,显然,每个点的期望是由相连的点的期望决定的,\(du_x\)为点\(x\)的度数,点\(x_1,x_2,x_3....x_k\)与点\(x\)相邻,则\(f[x]=\sum_{i=1}^k\frac{fx_i}{dux_i}\)

最后用高斯消元解一下每个点的期望即可,上代码

#include<bits/stdc++.h>
using namespace std;
int n,m,t,x,y;
double p,q,gai,chu,du[303],a[303][303],b[303],ans[303];
vector<int>l[303];
int main()
{
    scanf("%d%d%lf%lf",&n,&m,&p,&q);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        l[x].push_back(y),l[y].push_back(x),du[x]++,du[y]++;
    }
    gai=p/q,b[1]=-1;
    for(int i=1;i<=n;i++)
    {
        a[i][i]=-1;
        for(int j=0;j<l[i].size();j++)
            a[i][l[i][j]]=(1-gai)*(1/du[l[i][j]]);          
    }
    for(int i=1;i<=n;i++)
    {
        t=i;
        for(int j=i+1;j<=n;j++)
            if(a[j][i]>a[j][t])
                t=j;
        if(t!=i)
        {
            for(int j=i;j<=n;j++)
                swap(a[i][j],a[t][j]);
            swap(b[i],b[t]);
        }
        if(a[i][i]!=0)
            for(int j=i+1;j<=n;j++)
            {
                chu=a[j][i]/a[i][i];
                for(int k=i;k<=n;k++)
                    a[j][k]-=a[i][k]*chu;
                b[j]-=b[i]*chu;
            }
    }
    for(int i=n;i>=1;i--)
    {
        ans[i]=b[i]/a[i][i];
        for(int j=1;j<i;j++)
            b[j]-=a[j][i]*ans[i];
    }
    for(int i=1;i<=n;i++)
        printf("%.9lf\n",fabs(ans[i]*gai));
    return 0;
}

[USACO10HOL]赶小猪题解

标签:print   inline   scan   rac   ret   double   mes   using   https   

原文地址:https://www.cnblogs.com/dzice/p/11921325.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!