码迷,mamicode.com
首页 > 其他好文 > 详细

汉诺塔的非递归实现(栈)

时间:2019-11-29 13:05:47      阅读:104      评论:0      收藏:0      [点我收藏+]

标签:ret   stdin   cin   return   out   方式   int   stdout   name   

汉诺塔的非递归实现(栈)

美国学者找的规律:若是偶数,将a、b、c顺时针排列,否则a、c、b排列,然后反复做:

(1)最小盘顺时针移动一个

(2)那两个柱子将最小的移动了,空的话直接移

借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”),并保证每个移动符合汉诺塔问题的要求。

输入格式:

输入为一个正整数N,即起始柱上的盘数。

输出格式:

每个操作(移动)占一行,按柱1 -> 柱2的格式输出。

输入样例:

3

输出样例:

a -> c
a -> b
c -> b
a -> c
b -> a
b -> c
a -> c

美国。看人家递归咋写的吧

#include<iostream>
#include<cstdio>
#include<stack>
#include<cmath>
using namespace std;
int main()
{
//  freopen("test.in","r",stdin);
    //freopen("test.out","w",stdout);
    int n,num=0,pan1,now;
    long long times;
    char a[3];
    stack <int> ta[3];
    cin>>n;
    for (int i=n;i>=1;i--)
      ta[0].push(i);
    now=0;
    if (n%2==1)
    {
        a[0]='a';
        a[1]='c';
        a[2]='b';
    }
    else
    {
        a[0]='a';
        a[1]='b';
        a[2]='c';
    }
    times=pow(2,n)-1;
    while (num<times)
    {
        num++;
        pan1=ta[now].top();
        ta[now].pop();
        ta[(now+1)%3].push(pan1);
        printf("%c -> %c\n",a[now],a[(now+1)%3]);
        num++;
        if (num>times)
          break;
        if (ta[now].size()!=0 and (ta[(now+2)%3].size()==0 or ta[now].top()<ta[(now+2)%3].top()))
        {
            ta[(now+2)%3].push(ta[now].top());
            ta[now].pop();
            printf("%c -> %c\n",a[now],a[(now+2)%3]);
        }
        else
        {
            ta[now].push(ta[(now+2)%3].top());
            ta[(now+2)%3].pop();
            printf("%c -> %c\n",a[(now+2)%3],a[now]);
        }
        now=(now+1)%3;
    }
    return 0;
}

汉诺塔的非递归实现(栈)

标签:ret   stdin   cin   return   out   方式   int   stdout   name   

原文地址:https://www.cnblogs.com/IamIron-Man/p/11956998.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!