标签:角度 ESS 基于 lap 输出 size ttl cto oba
这里的star battle游戏不是指别的(像war frame),就是puzzle team club搞的游戏,在https://www.puzzle-star-battle.com/里面可以找到。
这里要解题的话,不能再像上回那样用舞蹈表(dancing link)了,因为游戏规则决定了方块的占用位置不是全部都要用,一个方格可以相邻1个或2个星星,无法像之前那样使用精确覆盖的做法。但是,这里要解题还是很简单的,约束条件的某一种(行内必须正好有n个星星)可以利用这点搞DFS。
star battle的规则如下:放置一定数量的星星在棋盘,使所有的星星邻近8格没有星星,且每行、每列、每个区域正好有指定数量的星星,至于指定数量是多少要看星星★左边是哪个数字
图1.1★表示每行每列每块必须正好有1个星星;3★则是正好有3个
这里就需要初始化每行每列每块占据的星星数为指定数字(这里的深度优先搜索参数就是行数,操作也是基于单行搜索,所以省略了每行占据星星数)
def init(): with open(‘starBattleChess1.txt‘,‘r‘) as f: chessStr = f.read() rowStrs = chessStr.split(‘\n‘) global rowsize, colsize rowsize = len(rowStrs) colsize = len(rowStrs[0].split(‘ ‘)) maxnum = 0 for rowStr in rowStrs: row = [] validrow = [] for j in range(2): occupy[j].append(limit) #0是每列,1是每块 for j in range(limit): answer.append([]) for colStr in rowStr.split(‘ ‘): maxnum = maxnum if int(colStr) < maxnum else int(colStr) row.append(int(colStr)) validrow.append(1) chess.append(row) valid.append(validrow)
深度优先搜索部分(基于单行横向搜索),答案部分用一个谜面长度*限制大小为长度的数组储存。这里对方格的占据操作使用类似于舞蹈表的消除(remove)和还原(resume)操作
def dfs(depth, occ, start): #print(‘depth : ‘ + str(depth) + ‘ occ : ‘ + str(occ) + ‘ start : ‘ + str(start)) if depth == rowsize: print(answer) printAnswer() return for i in range(start, colsize-limit+occ+1): if occupy[0][i] <= 0 or occupy[1][chess[depth][i]] <= 0 or valid[depth][i] == 0: continue resumePos = [] occupy[0][i] -= 1 occupy[1][chess[depth][i]] -= 1 for j in range(depth-1, depth+2): for k in range(i-1, i+2): if j < 0 or j > rowsize - 1:continue if k < 0 or k > rowsize - 1:continue if valid[j][k] != 0: valid[j][k] = 0 resumePos.append([j, k]) answer[depth * limit + occ] = [depth, i] if occ >= limit - 1: dfs(depth+1, 0, 0) else: dfs(depth, occ+1, i+1) for resume in resumePos: valid[resume[0]][resume[1]] = 1 occupy[0][i] += 1 occupy[1][chess[depth][i]] += 1
输出答案:
def printAnswer(): defaultImg = [‘+‘,‘|‘] for _ in range(rowsize): defaultImg[0] += ‘-+‘ defaultImg[1] += ‘ |‘ imgs = [defaultImg[0]] for i in range(rowsize): imgs.append(defaultImg[1]) imgs.append(defaultImg[0]) for ans in answer: a = ans[0] b = ans[1] imgs[2*a+1] = imgs[2*a+1][:2*b+1] + ‘*‘ + imgs[2*a+1][2*b+2:] print(reduce(lambda a,b:a+‘\n‘+b,imgs))
总的代码:
from functools import reduce import time chess = [] rowsize = 0 colsize = 0 limit = 2 # 看星星★左边是哪个数字就填哪个 valid = [] occupy = [[],[]]# 0 is vertical; 1 is block answer = [] # def printAnswer(): defaultImg = [‘+‘,‘|‘] for _ in range(rowsize): defaultImg[0] += ‘-+‘ defaultImg[1] += ‘ |‘ imgs = [defaultImg[0]] for i in range(rowsize): imgs.append(defaultImg[1]) imgs.append(defaultImg[0]) for ans in answer: a = ans[0] b = ans[1] imgs[2*a+1] = imgs[2*a+1][:2*b+1] + ‘*‘ + imgs[2*a+1][2*b+2:] print(reduce(lambda a,b:a+‘\n‘+b,imgs)) # def dfs(depth, occ, start): #print(‘depth : ‘ + str(depth) + ‘ occ : ‘ + str(occ) + ‘ start : ‘ + str(start)) if depth == rowsize: print(answer) printAnswer() return for i in range(start, colsize-limit+occ+1): if occupy[0][i] <= 0 or occupy[1][chess[depth][i]] <= 0 or valid[depth][i] == 0: continue resumePos = [] occupy[0][i] -= 1 occupy[1][chess[depth][i]] -= 1 for j in range(depth-1, depth+2): for k in range(i-1, i+2): if j < 0 or j > rowsize - 1:continue if k < 0 or k > rowsize - 1:continue if valid[j][k] != 0: valid[j][k] = 0 resumePos.append([j, k]) answer[depth * limit + occ] = [depth, i] if occ >= limit - 1: dfs(depth+1, 0, 0) else: dfs(depth, occ+1, i+1) for resume in resumePos: valid[resume[0]][resume[1]] = 1 occupy[0][i] += 1 occupy[1][chess[depth][i]] += 1 # def init(): with open(‘starBattleChess1.txt‘,‘r‘) as f: chessStr = f.read() rowStrs = chessStr.split(‘\n‘) global rowsize, colsize rowsize = len(rowStrs) colsize = len(rowStrs[0].split(‘ ‘)) maxnum = 0 for rowStr in rowStrs: row = [] validrow = [] for j in range(2): occupy[j].append(limit) for j in range(limit): answer.append([]) for colStr in rowStr.split(‘ ‘): maxnum = maxnum if int(colStr) < maxnum else int(colStr) row.append(int(colStr)) validrow.append(1) chess.append(row) valid.append(validrow) if __name__ == "__main__": init() start = time.time() dfs(0, 0, 0) end = time.time() print(‘search time : ‘ + str(end-start) + ‘s‘)
我们在同目录下创建starBattleChess1.txt文件,并录入棋盘:
0 1 1 1 1 1 2 2 2 2 0 0 0 3 3 1 4 4 2 2 0 0 0 3 3 3 4 4 2 2 0 5 4 4 4 4 4 4 2 2 0 5 4 6 6 6 6 6 2 2 5 5 5 6 6 6 6 6 6 2 5 5 5 5 5 5 7 7 7 7 5 5 5 5 8 5 7 7 7 7 5 9 9 8 8 8 8 7 7 7 9 9 8 8 8 8 8 7 7 7
执行结果:
[[0, 3], [0, 5], [1, 1], [1, 8], [2, 3], [2, 5], [3, 7], [3, 9], [4, 0], [4, 2], [5, 6], [5, 8], [6, 1], [6, 4], [7, 7], [7, 9], [8, 2], [8, 4], [9, 0], [9, 6]] +-+-+-+-+-+-+-+-+-+-+ | | | |*| |*| | | | | +-+-+-+-+-+-+-+-+-+-+ | |*| | | | | | |*| | +-+-+-+-+-+-+-+-+-+-+ | | | |*| |*| | | | | +-+-+-+-+-+-+-+-+-+-+ | | | | | | | |*| |*| +-+-+-+-+-+-+-+-+-+-+ |*| |*| | | | | | | | +-+-+-+-+-+-+-+-+-+-+ | | | | | | |*| |*| | +-+-+-+-+-+-+-+-+-+-+ | |*| | |*| | | | | | +-+-+-+-+-+-+-+-+-+-+ | | | | | | | |*| |*| +-+-+-+-+-+-+-+-+-+-+ | | |*| |*| | | | | | +-+-+-+-+-+-+-+-+-+-+ |*| | | | | |*| | | | +-+-+-+-+-+-+-+-+-+-+ search time : 0.9020516872406006s
这个算法还有优化空间。既然这个网站的棋盘都是唯一解,那肯定可以找出查到唯一解的方式。这个后面再说。
把这个答案录入网页:
图2.不要吐槽时间为什么这么久,3天前就打开过又退出了
嘿嘿,大功告成!
解这道题时,请抛弃1星棋盘的常规解法,多从多星角度考虑。之前我写代码就把最后的答案储存习惯性按1星写入,结果答案就只剩一半了。。。
标签:角度 ESS 基于 lap 输出 size ttl cto oba
原文地址:https://www.cnblogs.com/dgutfly/p/11961079.html