码迷,mamicode.com
首页 > 其他好文 > 详细

学习CNN系列二:训练过程

时间:2019-11-30 12:04:29      阅读:99      评论:0      收藏:0      [点我收藏+]

标签:计算   执行   --   需要   算法   表达式   完成   信息   神经网络   

  卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间精确的数学表达式,只要用已知的模式对卷积神经网络加以训练,网络就具有输入、输出之间映射的能力。

  其训练算法与传统的BP算法类似,主要分4步,可分为2个阶段:

  第一阶段,前向传播阶段:

  (1)从样本集中取一个样本,将样本输入网络;

  (2)计算相应的实际输出。

  在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。

  第二阶段,后向传播阶段:

  (3)计算实际输出与相应的理想输出之间的误差;

  (4)计算每个权重的梯度,再用梯度下降算法更新权重。

  ------------------------------------------------------------------------------------------------------------------------------------------------------------------------

  

学习CNN系列二:训练过程

标签:计算   执行   --   需要   算法   表达式   完成   信息   神经网络   

原文地址:https://www.cnblogs.com/candyRen/p/11961502.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!