码迷,mamicode.com
首页 > 其他好文 > 详细

Miller_Rabin、 Pollard_rho Template

时间:2014-10-30 14:57:08      阅读:195      评论:0      收藏:0      [点我收藏+]

标签:style   blog   io   color   os   ar   for   sp   strong   

Multiply and pow Function:

//计算 (a*b)%c.   a,b都是ll的数,直接相乘可能溢出的
//  a,b,c <2^63
ll mult_modq(ll a,ll b,ll c){
    a %= c;
    b %= c;
    ll ret = 0;
    while(b){
        if(b & 1){ret += a;ret %= c;}
        a <<= 1;
        if(a >= c)a %= c;
        b >>= 1;
    }
    return ret;
}

//计算  x^n %c
ll pow_mod(ll x,ll n,ll mod){
    if(n == 1)return x%mod;
    x %= mod;
    ll tmp = x;
    ll ret = 1;
    while(n){
        if(n & 1) ret = mult_mod(ret, tmp, mod);
        tmp = mult_mod(tmp, tmp, mod);
        n >>= 1;
    }
    return ret;
}

 

Miller_Rabin Prime Number test:

return TRUE when Prime Number (BE POSSIBLITY)

return FALSE when not a Prime Number

//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(ll a,ll n,ll x,ll t){
    ll ret = pow_mod(a, x, n);
    ll last = ret;
    for(int i = 1; i <= t; ++i){
        ret = mult_mod(ret,ret,n);
        if(ret == 1 && last !=1 && last != n - 1) return true;//合数
        last = ret;
    }
    if(ret != 1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;

bool Miller_Rabin(ll n){
    if(n < 2)   return false;
    if(n == 2)    return true;
    if((n & 1) == 0)    return false;//偶数
    ll x = n - 1;
    ll t = 0;
    while((x & 1) == 0){x >>= 1; ++t;}
    for(int i = 0; i <S ; ++i){
        ll a = rand() % (n - 1) + 1;
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}

 


Pollard_rho Algorithm

The quality factor decomposition :

ll factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始

ll gcd(ll a,ll b){
    if(a == 0)  return 1;
    if(a < 0) return gcd(-a,b);
    while(b){
        ll t = a % b;
        a = b;
        b = t;
    }
    return a;
}

ll Pollard_rho(ll x,ll c){
    ll i = 1, k = 2;
    ll x0 = rand()%x;
    ll y = x0;
    while(1){
        ++i;
        x0 = (mult_mod(x0,x0,x)+c)%x;
        ll d = gcd(y-x0,x);
        if(d != 1 && d != x) return d;
        if(y == x0) return x;
        if(i == k){y = x0; k += k;}
    }
}
//对n进行素因子分解
void findfac(ll n){
    if(Miller_Rabin(n)){
        factor[tol++] = n;
        return;
    }
    ll p = n;
    while(p >= n)   p = Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}

 

Miller_Rabin、 Pollard_rho Template

标签:style   blog   io   color   os   ar   for   sp   strong   

原文地址:http://www.cnblogs.com/wushuaiyi/p/4062412.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!