码迷,mamicode.com
首页 > 其他好文 > 详细

12.2周一学习记录

时间:2019-12-03 01:43:21      阅读:155      评论:0      收藏:0      [点我收藏+]

标签:zhang   iss   一个   orm   procedure   森林   sklearn   shu   baidu   

1.决定再重新读一遍sv论文。

2.MMD:https://blog.csdn.net/a1154761720/article/details/51516273

3.pytorch学习 中 torch.squeeze() 和torch.unsqueeze()的用法

https://blog.csdn.net/xiexu911/article/details/80820028

4.中位数

https://blog.csdn.net/zhang20072844/article/details/13372753

https://blog.csdn.net/z84616995z/article/details/18909475

5.贝叶斯因子https://www.zhihu.com/question/29620591

技术图片

 

 6.Benjamini-Hochberg Procedure

https://wenku.baidu.com/view/fcc64d9af61fb7360b4c6575.html

7.读完了似乎也并没有什么新的理解啊。

8.缺失值处理汇总。一直对impute这个单词的意思都不太理解,你应该早就直接百度数据impute,能够出现好多相关的博客啊,你就一直用网易翻译查看单词的意思,然后就被迷惑了。。。不懂的别瞎猜,多百度。

https://www.jianshu.com/p/90220f34f9d5

一般的处理缺失值的方法:

技术图片

 

 https://www.cnblogs.com/tecdat/p/11776029.html R中的插补(想法:其中介绍了不少插补的方法,比如说随机森林之类的看起来十分高大上,我也可以借来尝试一下解决问题。不就是代码吗....努力一下写一写。)

9.sklearn中有个imputer类直接可以直接对数据补充,但是我不明白为什么要fit呢?

https://blog.csdn.net/weixin_39541558/article/details/80627199

import numpy as np
from sklearn.preprocessing import Imputer
 
###1.使用均值填充缺失值
imp = Imputer(missing_values=NaN, strategy=mean, axis=0)
print(imp.fit([[1, 2], [np.nan, 3], [7, 6]]))
 
X = [[np.nan, 2], [6, np.nan], [7, 6]]
print(imp.transform(X))  

#以下为输出
Imputer(axis=0, copy=True, missing_values=NaN, strategy=mean, verbose=0)
[[4.         2.        ]
 [6.         3.66666667]
 [7.         6.        ]]

https://www.cnblogs.com/chaosimple/p/4153158.html 这个讲的比较清楚,先用fit拟合一个矩阵,之后用它的均值去给后来transform的矩阵进行填充。

可以选择均值/中位数/众数填充。

#原来需要一个基准的矩阵啊,我还以为是直接对一个矩阵求它的行和列就OK了,那应该在不同的方法中,可能处理的方法不同吧?(个人看法)

#但是如果是在sc中,如何进行呢?忽然想到了,那就用X去fit,然后再transformX就可以啦,就可以自动用本矩阵填充了。

#明天继续加油哦,如果睡不着的话,那就继续起来学。。

 

12.2周一学习记录

标签:zhang   iss   一个   orm   procedure   森林   sklearn   shu   baidu   

原文地址:https://www.cnblogs.com/BlueBlueSea/p/11974297.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!