码迷,mamicode.com
首页 > 其他好文 > 详细

「总结」插头$dp$

时间:2019-12-08 10:44:02      阅读:83      评论:0      收藏:0      [点我收藏+]

标签:span   角度   表示   一模一样   出现   转移   分类   需要   集中   

集中做完了插头$dp$

写一下题解。

一开始学的时候还是挺蒙的。

不过后来站在轮廓线$dp$的角度上来看就简单多了。

其实就是一种联通性$dp$,只不过情况比较多而已了。

本来转移方式有两种。逐行和逐格转移。

不过逐行转移因为分类太多所以被舍弃了。

一般的插头$dp$采用逐格转移。

插头表示已经进入当前格子的状态,而并不是将要进入的状态。

状态的表示方式常见的有两种:最小表示法和括号表示法。

括号表示法不如说是广义括号表示法的特殊一种情况,每个插头也就是左右括号就是表示两个相匹配的回路部分,而最小表示法则是一般的广义括号匹配,只是括号只是单纯的表示一条线路的两端。

 

1.$Ural 1519 Formula 1$

括号表示法裸题。

设两个插头,1表示左括号,2表示右括号。

分一下类就可以了。

0.0 如果是障碍格子就直接转移,如果是普通格子就可以开两个新的左右括号。

下面的讨论均在非障碍格子下。

0.1|0.2|1.0|2.0 将插头下移或者右移。

1.1|2.2 首先将两个插头消除,找到其中一个插头匹配的插头,并将之改成这两个插头。

2.1 消除插头。

1.2 在最后一个非障碍格子更新答案。

 

2.$CITY$

跟上一题一模一样,不过是限定了转移的方向而已。

 

3.邮递员

仍然是括号表示法。

其实和第一题仍然没什么区别,就是要遍历所有的地方,并且形成回路,注意到回路的顺逆时针走向是不同方案,所以最后答案*2。

 

4.地板

这个就是最小表示法了。

设两个插头1,2分别表示没拐过和拐过弯的$L$形状,要求没有障碍物的部分都铺砖。

那么开始分类讨论。

如果有障碍物:只有0.0这种状态可以转移到下一个格子。

如果没有障碍物:

0.0 -> 1.0|0.1|2.2 表示当前点伸出能够从两个方向伸出两个可以拐弯的,或者根本就把这个点当作转折点,那两个方向都不可以拐弯。

0.1 -> 0.1|2.0

1.0 -> 1.0|0.2

0.2 -> 0.2|0.0 如果没有其他插头,并且在最后一个非障碍格子可以更新答案。

2.0 -> 2.0|0.0 如果没有其他插头,并且在最后一个非障碍格子可以更新答案。

1.1 -> 0.0 两个没拐弯的匹配上了。

2.2 -> 无法转移

1.2 -> 无法转移

 

5.标识设计

其实和上一个题几乎一模一样。

只不过在最后添加一维表示当前已经出现了的$L$有几个。

如果已经出现了的有$3$个并且当前这个格子可以作为其中某一个的结束位置,那么更新答案。

 

6.神奇游乐园

和第一题一模一样就是把求方案改成了求最值。

 

7.$Manhattan Wiring$

这个题由于确定了起点和终点,所以不需要用到括号匹配。

只用两个插头表示是哪个线的插头即可。

 

8.$ParkII$

看起来是括号匹配,其实是最小表示法

和神奇游乐园大体上一样,是CDQ的论文题了。

我们考虑新加入一个独立插头表示一条独立的路径,

由于这次要求路径,所以会麻烦一点,这里的左右括号就不仅仅表示回路的两头了,而是表示一条路径的两头,这就是所谓一般性广义括号表示法,也就是最小表示法。

左右括号转移大体上和神奇游乐园一样。

多出来的独立插头设为3。

多出来的转移就是:

0.0 -> 0.3|3.0

0.3|3.0 -> 0.3|3.0 如果只有一个插头的话就可以更新答案了。

3.1|3.2|1.3|2.3 -> 0.0 清空当前两个括号,然后把1或者2对应的括号改为3。

3.3 -> 如果只有这两个括号的话就可以更新答案了,不转移。

 

暂时这么多。

「总结」插头$dp$

标签:span   角度   表示   一模一样   出现   转移   分类   需要   集中   

原文地址:https://www.cnblogs.com/Lrefrain/p/12004519.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!