码迷,mamicode.com
首页 > 其他好文 > 详细

2019-2020Nowcoder Girl初赛 题解

时间:2019-12-12 18:01:39      阅读:91      评论:0      收藏:0      [点我收藏+]

标签:problem   mes   eof   stack   拆分   pre   inline   ble   break   

题目都不是很难,就是最后一题有点毒瘤

第一题:牛妹爱整除

这个你把一个进制数进行拆分,拆分成若干位,然后在取模,这样会发现如果是x进制的数,那么对x+1这个进制转化即满足条件。

举个例子:一个x进制数abc  a*x*x+b*x+c

那么(a*x*x+b*x+c)%k  满足于 (a+b+c) 相等

则x=k+1,那么x%k==1  所以 a*(x%k)*(x%k)%k+b*(x%k)%k+c%k==(a+b+c)%k

代码很简单,有需求可以直接去牛客找

 

第二题:吃桃

这个是一个树的题目,直接dfs就可以解决,算是dp吧。

首先dfs找到深度,然后在找深度的同时把路径记录下来,最后输出,

为了保证小的先选可以先拍个序。

 

第三题:背包问题

这个是一个很裸的背包。

dp[j]表示价值为 j 的物品,可以占的最多的背包体积

 

第四题:泡面

不知道自己怎么就过了,之前cf有一个差不多的题目(我之前以为差不多),后来发现是两个不一样的题目。

但是比赛的时候并没有发现,然后我按照我的印象写了,居然A了,因为我写出bug了,但是这个bug好像很合适这个题目,谜之A了。。。

赛后重新写了一次。

这个就是一个模拟,用个优先队列模拟就可以了。

注意开longlong

技术图片
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=1e5+5;
typedef long long ll;
struct node{
    ll id,val;
    node(ll id=0,ll val=0):id(id),val(val){}
    bool operator<(const node &a)const{
        return a.id<id;
    }
}a[maxn];
bool cmp(node a,node b){
    return a.val<b.val;
}
priority_queue<node>que;
ll ans[maxn];
int main(){
    ll n,p,x;
    scanf("%lld%lld",&n,&p);
    for(int i=1;i<=n;i++) {
        scanf("%lld",&x);
        a[i]=node(i,x);
    }
    sort(a+1,a+1+n,cmp);
    ll nowtime=a[1].val,now=2;
    while(!que.empty()) que.pop();
    que.push(a[1]);
    while(!que.empty()){
        nowtime+=p;
        node u=que.top();que.pop();
        ans[u.id]=nowtime;
        while(now<=n&&a[now].val<=nowtime){
            que.push(a[now]);
            now++;
        }
        if(que.empty()&&now<=n){
            nowtime=a[now].val;
            que.push(a[now]);
            now++;        
        }
    }
    for(int i=1;i<=n;i++) printf("%lld ",ans[i]);
    printf("\n");
    return 0;
}
泡面

cf和这个很像的题目

https://codeforces.com/contest/1248/problem/E

技术图片
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <map>
#include <iostream>
#include <cstdlib>
#include <stack>
#define inf 0x3f3f3f3f
#define LL long long 
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;
struct node{
    int id;
    ll tim;
    node(int id=0,ll tim=0):id(id),tim(tim){}
    bool operator<(const node&a)const{
        return a.id<id;
    }
}a[maxn];
queue<node>que;
priority_queue<node>prique;
int mins[maxn*4];
void build(int id,int l,int r){
    mins[id]=inf;
    if(l==r) return ;
    int mid=(l+r)>>1;
    build(id<<1,l,mid);
    build(id<<1|1,mid+1,r);
}
void push_up(int id){
    mins[id]=min(mins[id<<1],mins[id<<1|1]);
}
 
void update(int id,int l,int r,int pos,int val){
    if(l==r){
        mins[id]=val;
        return ;
    }
    int mid=(l+r)>>1;
    if(pos<=mid) update(id<<1,l,mid,pos,val);
    else update(id<<1|1,mid+1,r,pos,val);
    push_up(id);
}
bool cmp(node a,node b){
    if(a.tim==b.tim) return a.id<b.id;
    return a.tim<b.tim;
}
ll ans[maxn];
int main(){
    int n,p;
    scanf("%d%d",&n,&p);
    build(1,1,n);
    for(int i=1;i<=n;i++) scanf("%lld",&a[i].tim),a[i].id=i;
    sort(a+1,a+1+n,cmp);
    
    while(!que.empty()) que.pop();
    while(!prique.empty()) prique.pop();
    
    int now=1;
    ll nowtime=a[now].tim;
    que.push(a[now]);
    update(1,1,n,a[now].id,a[now].id);now++;
    
    while(now<=n&&a[now].tim<=nowtime+p){
        if(a[now].id<=mins[1]) {
            que.push(a[now]);
            update(1,1,n,a[now].id,a[now].id);now++;
        }
        else prique.push(a[now]),now++;
    }
    
    while(now<=n||!que.empty()||!prique.empty()){
        while(!prique.empty()){
            node u=prique.top();
            if(u.id<=mins[1]){
                prique.pop();
                que.push(u);
                update(1,1,n,u.id,u.id);
            }
            else break;
        }
        while(now<=n&&a[now].tim<=nowtime+p){
            if(a[now].id<=mins[1]) {
                que.push(a[now]);
                update(1,1,n,a[now].id,a[now].id);now++;
            }
            else prique.push(a[now]),now++;
        }
        if(!que.empty()){
            int u=que.front().id;que.pop();
            ans[u]=nowtime+p;
            update(1,1,n,u,inf);
        }
        nowtime+=p;
        if(que.empty()&&prique.empty()&&now<=n) nowtime=a[now].tim;
    }
    for(int i=1;i<=n;i++) printf("%lld ",ans[i]);
    printf("\n");
    return 0;
}
E - Queue in the Train

 

第五题:伪直径

这个题目如果你之前碰到过求直径的题目就可以很快的反应过来,但是如果没有呢,就可能需要思考一会吧。

而且这个题目名字已经给了很大的提示了,所以还是很好写的。

答案就是直径减一

怎么求直径呢?这可以从紫书上看

就是两次dfs

就是随便找一个点然后找到最深的叶子节点,然后从这个叶子节点找到最深的另一个叶子节点就可以了。

 

第六题:最大最小差

这个题目好毒瘤

比赛的时候没有写出来

然后赛后,用线段树+二分写了一次,tle 3分

然后问了一个oi dalao,学习了一下双指针+st表的写法,依旧tle,但是 18分

最后加了各种优化,19分 tle

最后学会了一种超级厉害的快读,终于A了,oi的快读真强。

好像还可以用单调队列+双指针写,但是好难写,我不会。。。

技术图片
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
# define getchar() (S==T&&(T=(S=BB)+fread(BB,1,1<<20,stdin),S==T)?EOF:*S++)
char BB[1 << 20], *S = BB, *T = BB;
using namespace std;
const int maxn=1e6+5;
typedef long long ll;
int maxsum[maxn][22],minsum[maxn][22],a[12][maxn],v[12],f[maxn],w[30];
void init(int n){
    for(int i=1;i<maxn;i++) f[i]=(log(i*1.0)/log(2.0));
    for(int i=0;i<30;i++) w[i]=(1<<i);
}
void RMQ(int id,int n) {
    for(int i=1;i<=n;i++){
        maxsum[i][0]=a[id][i];
        minsum[i][0]=a[id][i];
    }
    for (int i = 1; i < 20; i++) {
        for (int j = 1; j <= n; j++) {
            if (j + w[i] - 1 <= n) {
                maxsum[j][i] = max(maxsum[j][i - 1], maxsum[j + w[i-1]][i - 1]);
                minsum[j][i] = min(minsum[j][i - 1], minsum[j + w[i-1]][i - 1]);
            }
        }
    }
}
  
int st(int x,int y){
    int k=f[y-x+1];
    int maxnum = max(maxsum[x][k], maxsum[y - w[k] + 1][k]);
    int minnum = min(minsum[x][k], minsum[y - w[k] + 1][k]);
    int ans = maxnum - minnum;
    return ans;
}
int L[maxn],R[maxn];
int read()
{
    int x=0;
    char c=getchar();
    while (!isdigit(c)) c=getchar();
    while (isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
    return x;
}
 
inline void write(ll X) {
    if (X < 0) { putchar(-); X = ~(X - 1); }
    int s[20], top = 0;
    while (X) { s[++top] = X % 10; X /= 10; }
    if (!top) s[++top] = 0;
    while (top) putchar(s[top--] + 0);
    putchar(\n);
}
  
int main(){
    int n,t;
    n=read();
    t=read();
    init(n);
    for(int i=1;i<=t;i++) v[i]=read();
    for(int i=1;i<=t;i++){
        for(int j=1;j<=n;j++){
            a[i][j]=read();
        }
    }
    ll ans=0;
    memset(R,inf,sizeof(R));
    for(int i=1;i<=t;i++){
        RMQ(i,n);
        int p1=1,p2=1;
        for(int j=1;j<=n;j++){
            while(p1<=j&&st(p1,j)>v[i]) p1++;
            while(p2+1<=j&&st(p2+1,j)>=v[i]) p2++;
              
            if(st(p1,j)!=v[i]) L[j]=inf;
            else L[j]=max(L[j],p1);
            if(st(p2,j)!=v[i]) R[j]=0;
            else R[j]=min(R[j],p2);
        }
    }
    for(int i=1;i<=n;i++){
        if(L[i]<=R[i]) ans+=R[i]-L[i]+1;
    }
//    printf("%lld\n",ans);
    write(ans);
    return 0;
}
快读好厉害

 

 

2019-2020Nowcoder Girl初赛 题解

标签:problem   mes   eof   stack   拆分   pre   inline   ble   break   

原文地址:https://www.cnblogs.com/EchoZQN/p/12030689.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!