码迷,mamicode.com
首页 > 其他好文 > 详细

基于yolo3自定义训练数据(三)使用imgaug扩大数据集

时间:2019-12-12 18:23:50      阅读:241      评论:0      收藏:0      [点我收藏+]

标签:实现类   大小   数据   基于   erp   定义   iter   ict   sim   

一、imguag简介

 

备选参考的图片扩大框架:kears Imagedatagenerator

参考文档

https://imgaug.readthedocs.io/en/latest/

python3.7

numpy1.17.0

https://imgaug.readthedocs.io/en/latest/

参数选择:

  • 如果可能,应使用最近邻插值或线性插值,因为它们比其他选项要快得多。使用插值的大多数增强器提供order参数(0 =最近邻,1 =线性)或interpolation参数(“最近”,“线性”)。
  • keep_size=True在所有更改图像尺寸的增强器中,默认设置为使用这很方便,因为它可以确保图像尺寸不会因扩展而改变。但是,它的确会导致明显的性能下降,通常不仅仅使带宽减半。keep_size=False尽可能尝试 您仍然可以在扩充后或使用来手动调整图像的大小KeepSizeByResize(Sequential(<augmenters>))
  • 当增强器提供以用户定义的方式填充新创建的像素的模式(例如pad_mode=constantPad以指定的恒定颜色填充所有填充的像素)时,使用edge代替constant 通常不会带来明显的性能损失。

具体的增强器建议:

  • 对于存在元素级同级的增强器(例如Multiply和 MultiplyElementwise),元素级增强器通常比非元素级的显着慢。
  • 如果需要模糊处理,AverageBlur是最快的选择,其次是GaussianBlur
  • 在较粗糙的图像(例如CoarseDropoutvs Dropout上运行的增强器可能比其非粗略的兄弟姐妹快得多。
  • 对比度归一化增强器在性能上均具有可比性,但基于直方图的增强器明显较慢。
  • PiecewiseAffine 是一个非常慢的增幅器,通常应由ElasticTransformation代替,ElasticTransformation可以实现类似的输出,并且速度要快得多。
  • Superpixels是一个相当缓慢的增强器,通常应该包装起来,例如Sometimes不要经常使用它并降低其性能影响。
  • 除天气FastSnowyLandscape增速器外,其他增速器都相当缓慢,仅在合理时才使用。

图片

以下数字代表小图像(64x64x3)和大图像(224x224x3)。B=1表示的批量大小1B=128其中一个128

https://imgaug.readthedocs.io/en/latest/source/performance.html

 

 

二、安装imguag

https://blog.csdn.net/limiyudianzi/article/details/86497305

https://blog.csdn.net/qq_38451119/article/details/82417412

 

三、imguag使用方法

 

 

 

 

基于yolo3自定义训练数据(三)使用imgaug扩大数据集

标签:实现类   大小   数据   基于   erp   定义   iter   ict   sim   

原文地址:https://www.cnblogs.com/StarZhai/p/12030558.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!