标签:坐标 公式 符号位 判断 部分 一个 距离 hat 函数
这里我们可以通过这个顶点跟终点之间的直线距离,也就是欧几里得距离,来近似地估计这个顶点跟终点的路径长度(注意:路径长度跟直线距离是两个概念)。我们把这个距离记作 h(i)(i 表示这个顶点的编号),专业的叫法是启发函数(heuristic function)。因为欧几里得距离的计算公式,会涉及比较耗时的开根号计算,所以,我们一般通过另外一个更加简单的距离计算公式,那就是曼哈顿距离(Manhattan distance)。曼哈顿距离是两点之间横纵坐标的距离之和。计算的过程只涉及加减法、符号位反转,所以比欧几里得距离更加高效。
int hManhattan(Vertex v1, Vertex v2) { // Vertex 表示顶点,后面有定义
return Math.abs(v1.x - v2.x) + Math.abs(v1.y - v2.y);
}
原来只是单纯地通过顶点与起点之间的路径长度 g(i),来判断谁先出队列,现在有了顶点到终点的路径长度估计值,我们通过两者之和 f(i)=g(i)+h(i),来判断哪个顶点该最先出队列。综合两部分,我们就能有效避免刚刚讲的“跑偏”。这里 f(i) 的专业叫法是估价函数(evaluation function)。
标签:坐标 公式 符号位 判断 部分 一个 距离 hat 函数
原文地址:https://www.cnblogs.com/yuanjiangw/p/12038321.html