码迷,mamicode.com
首页 > 其他好文 > 详细

cerely-分布式异步任务队列

时间:2019-12-15 14:45:35      阅读:132      评论:0      收藏:0      [点我收藏+]

标签:hub   image   官方文档   logfile   tin   alc   调度   val   RoCE   

Celery 是一个强大的 分布式任务队列 的 异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。

在Celery中几个基本的概念,需要先了解下,不然不知道为什么要安装下面的东西。概念:Broker、Backend。

broker

broker是一个消息传输的中间件或消息队列,可以理解为一个邮箱。

每当应用程序调用celery的异步任务的时候,会向broker传递消息,而后celery的worker将会取到消息,进行对于的程序执行。其中Broker的中文意思是 经纪人 ,其实就是一开始说的 消息队列 ,用来发送和接受消息。这个Broker有几个方案可供选择:RabbitMQ (消息队列),Redis(缓存数据库),数据库(不推荐),等等

 backend

用于存储这些消息以及celery执行的一些消息和结果。

Backend是在Celery的配置中的一个配置项 CELERY_RESULT_BACKEND ,作用是保存结果和状态,如果你需要跟踪任务的状态,那么需要设置这一项,可以是Database backend,也可以是Cache backend,具体可以参考这里: CELERY_RESULT_BACKEND 。

brokers,官方推荐是 rabbitmq 和 redis,至于 backend,就是数据库。为了简单可以都使用 redis。

这是在网上最多的一张Celery的图

技术图片

 

 

 

 

Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。 

1.消息中间件broker

Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, RedisMongoDB (experimental), Amazon SQS (experimental),CouchDB (experimental), SQLAlchemy (experimental),Django ORM (experimental), IronMQ

2.任务执行单元

Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

3.任务结果存储

Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis,memcached, mongodb,SQLAlchemy, Django ORM,Apache Cassandra, IronCache 等。

 

安装:

pip install redis
pip install celery

它的架构组成如下图:

技术图片

 

 

Celery 主要包含以下几个模块:

  • 任务模块 Task

    包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往任务队列,而定时任务由 Celery Beat 进程周期性地将任务发往任务队列。

  • 消息中间件 Broker

    Broker,即为任务调度队列,接收任务生产者发来的消息(即任务),将任务存入队列。Celery 本身不提供队列服务,官方推荐使用 RabbitMQ 和 Redis 等。

  • 任务执行单元 Worker

    Worker 是执行任务的处理单元,它实时监控消息队列,获取队列中调度的任务,并执行它。

  • 任务结果存储 Backend

    Backend 用于存储任务的执行结果,以供查询。同消息中间件一样,存储也可使用 RabbitMQ, redis 和 MongoDB 等。

 

 

开始使用 Celery

使用celery包含三个方面:1. 定义任务函数。2. 运行celery服务。3. 客户应用程序的调用。

创建 Celery 实例

将下面的代码保存为文件 tasks.py

# -*- coding: utf-8 -*-

import time
from celery import Celery

broker = redis://127.0.0.1:6379
backend = redis://127.0.0.1:6379/0

app = Celery(my_task, broker=broker, backend=backend)

@app.task
def add(x, y):
    time.sleep(5)     # 模拟耗时操作
    return x + y

上面的代码做了几件事:

创建了一个 Celery 实例 app,名称为 my_task;
指定消息中间件用 redis,URL 为 redis://127.0.0.1:6379;
指定存储用 redis,URL 为 redis://127.0.0.1:6379/0;
创建了一个 Celery 任务 add,当函数被 @app.task 装饰后,就成为可被 Celery 调度的任务;

启动 Celery Worker

在当前目录,使用如下方式启动 Celery Worker:

celery worker -A tasks --loglevel=info

其中:

参数 -A 指定了 Celery 实例的位置,本例是在 tasks.py 中,Celery 会自动在该文件中寻找 Celery 对象实例,当然,我们也可以自己指定,在本例,使用 -A tasks.app;
参数 --loglevel 指定了日志级别,默认为 warning,也可以使用 -l info 来表示;
在生产环境中,我们通常会使用 Supervisor 来控制 Celery Worker 进程。

启动成功后,控制台会显示如下输出:

技术图片

 

调用任务

现在,我们可以在应用程序中使用 delay() 或 apply_async() 方法来调用任务。

在当前目录打开 Python 控制台,输入以下代码:

>>> from tasks import add
>>> add.delay(2, 8)
<AsyncResult: 2272ddce-8be5-493f-b5ff-35a0d9fe600f>

在上面,我们从 tasks.py 文件中导入了 add 任务对象,然后使用 delay() 方法将任务发送到消息中间件(Broker),Celery Worker 进程监控到该任务后,就会进行执行。我们将窗口切换到 Worker 的启动窗口,会看到多了两条日志:

[2016-12-10 12:00:50,376: INFO/MainProcess] Received task: tasks.add[2272ddce-8be5-493f-b5ff-35a0d9fe600f]
[2016-12-10 12:00:55,385: INFO/PoolWorker-4] Task tasks.add[2272ddce-8be5-493f-b5ff-35a0d9fe600f] succeeded in 5.00642602402s: 10

这说明任务已经被调度并执行成功。

另外,我们如果想获取执行后的结果,可以这样做:

>>> result = add.delay(2, 6)
>>> result.ready()   # 使用 ready() 判断任务是否执行完毕
False
>>> result.ready()
False
>>> result.ready()
True
>>> result.get()     # 使用 get() 获取任务结果
8

在上面,我们是在 Python 的环境中调用任务。事实上,我们通常在应用程序中调用任务。比如,将下面的代码保存为 client.py:

# -*- coding: utf-8 -*-

from tasks import add

# 异步任务
add.delay(2, 8)

print hello world

运行命令 python client.py,可以看到,虽然任务函数 add 需要等待 5 秒才返回执行结果,但由于它是一个异步任务,不会阻塞当前的主程序,因此主程序会往下执行 print 语句,打印出结果。

 

使用配置
在上面的例子中,我们直接把 Broker 和 Backend 的配置写在了程序当中,更好的做法是将配置项统一写入到一个配置文件中,通常我们将该文件命名为 celeryconfig.py。Celery 的配置比较多,可以在官方文档查询每个配置项的含义。

下面,我们再看一个例子。项目结构如下:

celery_demo                    # 项目根目录
    ├── celery_app             # 存放 celery 相关文件
    │   ├── __init__.py
    │   ├── celeryconfig.py    # 配置文件
    │   ├── task1.py           # 任务文件 1
    │   └── task2.py           # 任务文件 2
    └── client.py              # 应用程序

__init__.py 代码如下:

# -*- coding: utf-8 -*-

from celery import Celery

app = Celery(demo)                                # 创建 Celery 实例
app.config_from_object(celery_app.celeryconfig)   # 通过 Celery 实例加载配置模块

celeryconfig.py 代码如下:

BROKER_URL = redis://127.0.0.1:6379               # 指定 Broker
CELERY_RESULT_BACKEND = redis://127.0.0.1:6379/0  # 指定 Backend

CELERY_TIMEZONE=Asia/Shanghai                     # 指定时区,默认是 UTC
# CELERY_TIMEZONE=UTC                             

CELERY_IMPORTS = (                                  # 指定导入的任务模块
    celery_app.task1,
    celery_app.task2
)

task1.py 代码如下:

import time
from celery_app import app

@app.task
def add(x, y):
    time.sleep(2)
    return x + y

task2.py 代码如下:

import time
from celery_app import app

@app.task
def multiply(x, y):
    time.sleep(2)
    return x * y

client.py 代码如下:

# -*- coding: utf-8 -*-

from celery_app import task1
from celery_app import task2

task1.add.apply_async(args=[2, 8])        # 也可用 task1.add.delay(2, 8)
task2.multiply.apply_async(args=[3, 7])   # 也可用 task2.multiply.delay(3, 7)

print hello world

现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令:

celery -A celery_app worker --loglevel=info

接着,运行 python client.py,它会发送两个异步任务到 Broker,在 Worker 的窗口我们可以看到如下输出:

[2016-12-10 13:51:58,939: INFO/MainProcess] Received task: celery_app.task1.add[9ccffad0-aca4-4875-84ce-0ccfce5a83aa]
[2016-12-10 13:51:58,941: INFO/MainProcess] Received task: celery_app.task2.multiply[64b1f889-c892-4333-bd1d-ac667e677a8a]
[2016-12-10 13:52:00,948: INFO/PoolWorker-3] Task celery_app.task1.add[9ccffad0-aca4-4875-84ce-0ccfce5a83aa] succeeded in 2.00600231002s: 10
[2016-12-10 13:52:00,949: INFO/PoolWorker-4] Task celery_app.task2.multiply[64b1f889-c892-4333-bd1d-ac667e677a8a] succeeded in 2.00601326401s: 21

 

 

 

定时任务

Celery 除了可以执行异步任务,也支持执行周期性任务(Periodic Tasks),或者说定时任务。Celery Beat 进程通过读取配置文件的内容,周期性地将定时任务发往任务队列。

让我们看看例子,项目结构如下:

celery_demo                    # 项目根目录
    ├── celery_app             # 存放 celery 相关文件
        ├── __init__.py
        ├── celeryconfig.py    # 配置文件
        ├── task1.py           # 任务文件
        └── task2.py           # 任务文件

__init__.py 代码如下:

# -*- coding: utf-8 -*-

from celery import Celery

app = Celery(demo)
app.config_from_object(celery_app.celeryconfig)

celeryconfig.py 代码如下:

# -*- coding: utf-8 -*-

from datetime import timedelta
from celery.schedules import crontab

# Broker and Backend
BROKER_URL = redis://127.0.0.1:6379
CELERY_RESULT_BACKEND = redis://127.0.0.1:6379/0

# Timezone
CELERY_TIMEZONE=Asia/Shanghai    # 指定时区,不指定默认为 UTC
# CELERY_TIMEZONE=UTC

# import
CELERY_IMPORTS = (
    celery_app.task1,
    celery_app.task2
)

# schedules
CELERYBEAT_SCHEDULE = {
    add-every-30-seconds: {
         task: celery_app.task1.add,
         schedule: timedelta(seconds=30),       # 每 30 秒执行一次
         args: (5, 8)                           # 任务函数参数
    },
    multiply-at-some-time: {
        task: celery_app.task2.multiply,
        schedule: crontab(hour=9, minute=50),   # 每天早上 950 分执行一次
        args: (3, 7)                            # 任务函数参数
    }
}

task1.py 代码如下:

import time
from celery_app import app

@app.task
def add(x, y):
    time.sleep(2)
    return x + y

task2.py 代码如下:

import time
from celery_app import app

@app.task
def multiply(x, y):
    time.sleep(2)
    return x * y

现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令:

celery -A celery_app worker --loglevel=info

接着,启动 Celery Beat 进程,定时将任务发送到 Broker,在项目根目录下执行下面命令:

celery_demo $ celery beat -A celery_app
celery beat v4.0.1 (latentcall) is starting.
__    -    ... __   -        _
LocalTime -> 2016-12-11 09:48:16
Configuration ->
    . broker -> redis://127.0.0.1:6379//
    . loader -> celery.loaders.app.AppLoader
    . scheduler -> celery.beat.PersistentScheduler
    . db -> celerybeat-schedule
    . logfile -> [stderr]@%WARNING
    . maxinterval -> 5.00 minutes (300s)

 

之后,在 Worker 窗口我们可以看到,任务 task1 每 30 秒执行一次,而 task2 每天早上 9 点 50 分执行一次。

在上面,我们用两个命令启动了 Worker 进程和 Beat 进程,我们也可以将它们放在一个命令中:

$ celery -B -A celery_app worker --loglevel=info

 

 

错误:Celery ValueError: not enough values to unpack (expected 3, got 0)

解决方案:

pip install eventlet

celery -A <mymodule> worker -l info -P eventlet

参考文章:https://blog.csdn.net/chenqiuge1984/article/details/80127446

cerely-分布式异步任务队列

标签:hub   image   官方文档   logfile   tin   alc   调度   val   RoCE   

原文地址:https://www.cnblogs.com/pfeiliu/p/12043904.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!