码迷,mamicode.com
首页 > 其他好文 > 详细

Nilearn教程系列(2)-3D和4D niimgs:处理和可视化

时间:2019-12-15 22:13:02      阅读:277      评论:0      收藏:0      [点我收藏+]

标签:lse   res   warnings   vol   warning   cut   公众   src   war   

本分享为脑机学习者Rose整理发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195
技术图片

3D和4D niimgs:处理和可视化

第一步:加载数据

from nilearn import datasets
import warnings
warnings.filterwarnings("ignore")
print('Datasets are stored in: %r' % datasets.get_data_dirs())

motor_images = datasets.fetch_neurovault_motor_task()
print(motor_images.images)

tmap_filename = motor_images.images[0]

第二步:可视化

# 我们将3D数据,可视化为统计图
from nilearn import plotting
plotting.plot_stat_map(tmap_filename)

技术图片


"""
# 设置阈值来绘制效果图
这里的阈值设置为3
threshold=3
"""
plotting.plot_stat_map(tmap_filename, threshold=3)

技术图片

可视化4D文件

rsn = datasets.fetch_atlas_smith_2009()['rsn10']
print(rsn)

技术图片

"""
查看4D图片的形状
"""
from nilearn import image
print(image.load_img(rsn).shape)

(91, 109, 91, 10)

"""
获取第一组数据(卷)
python中索引从0开始
"""
first_rsn = image.index_img(rsn, 0)
print(first_rsn.shape)

(91, 109, 91)


"""
绘制第一组数据
"""
plotting.plot_stat_map(first_rsn)

技术图片

"""
循环绘制4D文件中的所有组(卷)-volumes
"""
for img in image.iter_img(rsn):
    # img is now an in-memory 3D img
    plotting.plot_stat_map(img, threshold=3, 
                           display_mode="z", 
                           cut_coords=1,
                           colorbar=False)

技术图片

脑机学习者Rose笔记分享,QQ交流群:903290195
更多分享,请关注公众号
技术图片

Nilearn教程系列(2)-3D和4D niimgs:处理和可视化

标签:lse   res   warnings   vol   warning   cut   公众   src   war   

原文地址:https://www.cnblogs.com/RoseVorchid/p/12045798.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!