码迷,mamicode.com
首页 > 其他好文 > 详细

集合类源码(七)Map(ConcurrentHashMap, ConcurrentSkipListMap, TreeMap)

时间:2019-12-20 18:42:46      阅读:74      评论:0      收藏:0      [点我收藏+]

标签:服务   没有初始化   comm   没有   boolean   数组   while 循环   font   遍历   

ConcurrentHashMap

内部结构

在JDK1.8之前的实现结构是:ReentrantLock+Segment+HashEntry+链表

技术图片

JDK1.8之后的实现结构是:synchronized+CAS+Node+链表或红黑树(与HashMap一致)

技术图片

而1.8之前锁的是Segment,1.8锁的是Node数组里的Node,准确来说是头结点。如图虚线所示:

技术图片

 为什么要废弃锁分段机制:

1. 分段造成内存浪费(内存不连续,碎片化)

2. 在添加时竞争同一个锁的概率非常小,分段锁反而会造成更新等操作的长时间等待;并且当某个段很大时,分段锁的性能会下降。

3. 为了提高 GC 的效率

 为什么加锁不用ReentrantLock而是用synchronized:

1. 锁的细化,之前ReentrantLock锁住的是整个段,现在synchronized锁住的是单个Node。

2. 因为锁的细化,出现竞争的情况大大减少。

3. 如果竞争同一个Node,只要线程可以在自旋有限次数内拿到锁,Synchronized就不会升级为重量级锁,而等待的线程也就不用被挂起,我们也就少了挂起和唤醒这个上下文切换的过程开销;而ReentrantLock不会自旋,只会挂起,多了个上下文切换的开销。

为什么容量最好为2的幂:

当数组长度为2的n次幂的时候,不同的key算得hash相同的几率较小,那么数据在数组上分布就比较均匀,也就是发生碰撞的几率较小,进而导致链表结构减少,查询的时候不用遍历链表的话查询效率就高了。

为什么get不用加锁:

前面我画的图里,Node的成员变量val是用volatile关键字修饰的,其它线程做出的修改能够马上看见,保证每次读取的都是最新的数据。

源码

put

final V putVal(K key, V value, boolean onlyIfAbsent) {
    // key和value 不能为null
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    // 遍历Node数组
    for (Node<K,V>[] tab = table;;) {
        // f存储当前位置数组上的Node,n代表数组长度,i代表当前数组下标,fh代表当前Node的hash值
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            // 为空或者长度为0,初始化数组
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 目标位置的值为null,利用CAS设置value,返回。
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            // 如果hash值等于-1,代表正在扩容,helpTransfer会帮助扩容
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            // 加锁进入
            synchronized (f) {
                // 再获取一下当前位置的Node,如果和前面获取的f不一致则发生了变化,跳出同步块
                if (tabAt(tab, i) == f) {
                    // fh为正数,代表链表结构
                    if (fh >= 0) {
                        binCount = 1;
                        // 遍历链表节点
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 如果hash值一样,并且key也一样,则覆盖旧值
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            // 如果已经遍历到了最后(e.next==null),则直接插入到最后
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    // fh < 0代表正在扩容或者红黑树结构
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                        // 添加到红黑树中
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            // key冲突,则覆盖旧值
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            // binCount为当前位置包含的的Node数量,如果不是0,则判断是否需要扩容
            if (binCount != 0) {
                // Node数量大于等于8,当前位置的数据类型转为树
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                // 如果oldVal不为空,证明存在覆盖的情况,直接返回旧值
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 整个Map的Node数量+1,如果需要扩容则进行扩容
    addCount(1L, binCount);
    return null;
}

过程和HashMap类似:

0. Node数组没有初始化先去初始化;

1. 根据hash找到数组中的位置,如果此位置为空,则直接利用CAS将新节点放在此处;

2. 如果当前位置不为空,则判断此位置的Node的hash是否等于-1,等于-1代表正在进行扩容操作,调用helpTransfer协助扩容;

3. 此位置Node的hash不等于-1,则对其进行加锁:

4. 如果此位置Node的hash大于等于0,证明这是个链表结构,先看是否存在相同的key,有则覆盖,无则把新结点添加到链表最后;

5. 否则判断当前节点是否是树节点,如果是树节点,则添加到树中,有重复的key同样会覆盖;

6. 退出同步块,判断binCount(Node计数器)如果大于等于8,则把当前位置的链表转变成红黑树;(这里可以看出,binCount主要服务于链表结构,具体位置统计当前链表的大小)

7. 最后把整个Map的Node总数+1,如果需要扩容则扩容。

下面看一下initTable【初始化的过程】

private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        // table为空并且sizeCtl < 0,有其它线程在初始化,则调用Thread.yield(),让掉自己的CPU执行时间
        if ((sc = sizeCtl) < 0) // 不扩容时:sizeCtl=数组长度*扩容因子;扩容和初始化table时:sizeCtl < 0
            Thread.yield(); // 放弃初始化的竞争,仅仅自旋
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            // sizeCtl > 0,说明没有线程竞争初始化table,利用CAS将sizeCtl设置为-1,代表正在初始化
            try {
                // 再次判断table是否为空
                if ((tab = table) == null || tab.length == 0) {
                    // 设置table容量,如果sc大于0则使用sc,否则使用默认的16
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    // 根据容量new一个Node数组
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    // 新数组替换老数组
                    table = tab = nt;
                    // sc = 新容量 - (新容量/2^2),无符号右移2位,相当于除以2^2=4
                    // 以16为例:sc = 16-(16/4)= 16-4 = 12,也就是下一次扩容的阈值
                    sc = n - (n >>> 2);
                }
            } finally {
                // 最后,更新sizeCtl
                sizeCtl = sc;
            }
            break;
        }
    }
    // 返回新数组
    return tab;
}

总结:

1. 根据sizeCtl判断,如果小于0,表示正在初始化,则让出当前线程的时间片。

2. 设置sizeCtl为-1,代表正在执行初始化操作;如果sc存储的变量大于0,则新容量=sc,否则等于默认容量16;根据新容量new一个新Node数组,并更新table为新数组;更新sizeCtl为新容量的75%

再来看一下addCount【Node总数+1 & 扩容的过程】

/**
 * sizeCtl(-1表示table正在初始化,其他线程要让出CPU时间片;-N表示有N-1个线程正在执行扩容操作;大于0表示扩容阈值=容量*负载因子)
 * @param x 需要加上的数量
 * @param check if <0, don‘t check resize, if <= 1 only check if uncontended
 */
private final void addCount(long x, int check) {
    // CounterCell:顾名思义,用于计数的格子。说白了就是用来统计table中每一个位置的Node数量。
    CounterCell[] as; long b, s;
    // CounterCell不为null
    if ((as = counterCells) != null ||
        // 或者利用CAS将baseCount更新为baseCount+1失败,就放弃对baseCount的操作
        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        CounterCell a; long v; int m;
        boolean uncontended = true;
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
            !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        // 合计Node总数,其中的实现是遍历CounterCell[],累加其中的value
        s = sumCount();
    }
    // check>=0,需要检查是否需要扩容
    if (check >= 0) {
        // tab:指向table,nt:指向nextTable;n为当前table的容量,sc为当前扩容阈值
        Node<K,V>[] tab, nt; int n, sc;
        // Node总数大于扩容阈值sizeCtl 并且 table不为空 并且 table容量小于最大容量
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            int rs = resizeStamp(n);
            // 如果正在扩容
            if (sc < 0) {
                // 如果sizeCtl变化了或者扩容结束了,则跳出循环
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                // 如果可以帮助扩容,那么将 sc 加 1. 表示多了一个线程在帮助扩容
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            // 如果没有扩容,将 sc 更新为负数,表示当前线程发起扩容操作
            else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}

总结:

1. 使table的长度+1。CounterCell不为null,就使用CounterCell,否则直接利用CAS操纵baseCount。

2. 如果需要扩容,先看是否已经在扩容了,如果是,则加入扩容线程,否则就调用扩容方法开启扩容。

最后看transfer方法,这是扩容过程 的核心

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    // n为当前数组大小,stride存储步长
    int n = tab.length, stride;
    // 根据cpu核数计算出步长,用于分割扩容任务,方便其余线程帮助扩容,最小为16
    // 默认每个线程处理16个桶。因此,如果长度是16的时候,扩容的时候只会有一个线程扩容。
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    // 判断nextTab是否为空,nextTab是暂时存储扩容后的node的数组,第一次进入这个方法的线程才会发现nextTab为空
    if (nextTab == null) {            // initiating
        try {
            // 初始化nextTab,容量是tab的2倍
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        // 当前数组长度赋给transferIndex
        transferIndex = n;
    }
    // nextTab的大小
    int nextn = nextTab.length;
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    // finishing为true代表扩容结束
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        // 进入一个 while 循环,分配数组中一个桶的区间给线程. 从大到小进行分配。当拿到分配值后,进行 i-- 递减。这个 i 就是数组下标。
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }

        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            // 如果扩容结束
            if (finishing) {
                // 清除临时变量
                nextTable = null;
                // 更新table变量
                table = nextTab;
                // 更新sizeCtl,这个等价于新容量*0.75
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            // 尝试将 sc -1. 表示这个线程结束帮助扩容了
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 果 sc - 2 不等于标识符左移 16 位。如果他们相等了,说明没有线程在帮助他们扩容了。也就是说,扩容结束了。
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    // 不相等,说明没结束,当前线程结束方法。
                    return;
                // 如果相等,扩容结束了,更新 finising 变量
                finishing = advance = true;
                // 再次循环检查一下整张表
                i = n; // recheck before commit
            }
        }
        // 如果没有完成任务,且 i 对应的槽位是空,尝试 CAS 插入占位符,让 putVal 方法的线程感知。
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        // 如果 i 对应的槽位不是空,且有了占位符,那么该线程跳过这个槽位,处理下一个槽位。
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            // 如果以上都是不是,说明这个槽位有一个实际的值。开始同步处理这个桶。
            // 到这里,都还没有对桶内数据进行转移,只是计算了下标和处理区间,然后一些完成状态判断。同时,如果对应下标内没有数据或已经被占位了,就跳过了。
            // 下面的处理过程和HashMap基本一样
            synchronized (f) {
                // 再次判断当前节点是否发生了改变
                if (tabAt(tab, i) == f) {
                    // ln=lowNode=低位桶,hn=highNode=高位桶
                    Node<K,V> ln, hn;
                    // 当前是链表结构
                    if (fh >= 0) {
                        // 当前节点hash和老长度进行与运算
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        // 从当前节点的后继开始遍历
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            // 对每个节点的hash同长度进行按位与操作
                            int b = p.hash & n;
                            // 如果节点的 hash 值和首节点的 hash 值按位与结果不同
                            if (b != runBit) {
                                // 更新 runBit,用于下面判断 lastRun 该赋值给 ln 还是 hn。
                                runBit = b;
                                // 这个 lastRun 保证后面的节点与自己的按位与值相同,避免后面没有必要的循环
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            // 如果最后更新的 runBit 是 0 ,设置低位节点
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            // 否则设置高位节点
                            hn = lastRun;
                            ln = null;
                        }
                        // 从头开始循环,目的是生成两个链表,lastRun 作为停止条件,这样做为了避免不必要的循环(lastRun 后面都是相同的hash按位与结果)
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            // 依然根据是否为0作为区分条件
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        // 在新的数组i的位置上设置低位链表
                        setTabAt(nextTab, i, ln);
                        // 在新的数组i+n的位置上设置高位链表
                        setTabAt(nextTab, i + n, hn);
                        // 在老数组i的位置的链表设置成占位符
                        setTabAt(tab, i, fwd);
                        // 继续向后
                        advance = true;
                    }
                    // 树结构
                    else if (f instanceof TreeBin) {
                        // 当前位置的头节点,只不过是TreeNode
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        // 定义低位树和高位树
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        // 统计树的大小,为了判断是否需要退化成链表
                        int lc = 0, hc = 0;
                        // 从根开始遍历
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            // 当前节点的hash和老长度做按位与操作,为0放在低位
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        // 低位达到临界值,低位退化
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        // 高位达到临界值,高位退化
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        // 在新的数组i的位置上设置低位树
                        setTabAt(nextTab, i, ln);
                        // 在新的数组i+n的位置上设置高位链表
                        setTabAt(nextTab, i + n, hn);
                        // 老数组i的位置上设置占位符
                        setTabAt(tab, i, fwd);
                        // 继续向后
                        advance = true;
                    }
                }
            }
        }
    }
}

总体来说分为两部分:

1. 扩容前的准备和相关状态的检查

①:初始化用于存储扩容后数据的nextTable

②:分配一个桶给当前线程;判断是否扩容结束,扩容结束更新table和sizeCtl变量;判断当前桶是不是被占用了,被占用则跳过这个桶;

2. 加锁扩容

①:判断节点类型

②:如果是链表,从头结点开始遍历链表,通过当前节点老长度按位与操作生成一个runBit,每次遇到与前一个runBit不同的节点,则更新runBit和lastRun(当前与前面runBit不同的节点),直到遍历结束;

③:根据runBit是否为0,把lastRun节点赋给低位链表或者高位链表;

④:再次遍历链表,分割出两部分链表:以lastRun节点为停止遍历条件,根据每个Node的hash和老长度的按位与结果是否为0,把Node划分到低位链表和高位链表中。最后把低位链表和高位链表放到新数组i和i+n的位置上,老数组i的位置上设置占位符。继续处理其它剩余的桶。

⑤:处理树形结构,逻辑和链表一样,只不过多了个判断是否退化成链表的逻辑。

扩容过程我画了个图

技术图片

 

 

 最后设置新位置

技术图片

 

 

 

 

 

 未完待续

 

ConcurrentSkipListMap

--

 

TreeMap

--

.

集合类源码(七)Map(ConcurrentHashMap, ConcurrentSkipListMap, TreeMap)

标签:服务   没有初始化   comm   没有   boolean   数组   while 循环   font   遍历   

原文地址:https://www.cnblogs.com/LUA123/p/11928987.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!