码迷,mamicode.com
首页 > 其他好文 > 详细

获取图片并保存

时间:2019-12-20 21:04:31      阅读:115      评论:0      收藏:0      [点我收藏+]

标签:ecc   分析   进制   erro   lap   pid   测试   chunk   out   

获取某一个网站的图片信息需要用到requests模块,所以我们需要安装requests

安装

pip install requests  # 直接安装
pip install -i https://pypi.doubanio.com/simple/ requests  # 指定地址安装

 

测试是否安装成功

import requests   # 回车不报错就算安装成功
response = requests.get("https://www.baidu.com")
print(response.status_code)  # 200,证明访问成功

网络正常的情况下,可以访问百度,证明安装成功

 

发送请求

import requests  # 导包
response = requests.request(method=get, url=https://www.baidu.com)  # 向百度首页发送请求,请求方式是get
print(response.status_code)  # 获取返回code码

request类中常用的参数:

  • method:请求方式。
  • url:请求URL。
  • **kwargs:
    • params:字典或者字节序列,作为参数增加到url中,使用这个参数可以把一些键值对以k1=v1&k2=v2的模式增加到url中,get请求中用的较多。
    • data:字典、字节序列或者文件对象,重点作为向服务器提供或提交资源,作为请求的请求体,与params不同放在url上不同。它也可以接受一个字符串对象。
    • json:json格式的数据,可以向服务器提交json类型的数据。
    • headers:字典,定义请求的请求头,比如可以headers字典定义user agent。
    • cookies:字典或者CookieJar。
    • auth:元组,用来支持HTTP认证功能。
    • files:字典,用来向服务器传输文件。
    • timeout:指定超时时间。
    • proxies:字典,设置代理服务器。
    • allow_redirects:开关,是否允许对URL进行重定向,默认为True。
    • stream:开关,是否对获取内容进行立即下载,默认为False,也就是立即下载。这里需要说明的,stream一般应用于流式请求,比如说下载大文件,不可能一次请求就把整个文件都下载了,不现实,这种情况下,就要设置stream=True,requests无法将连接释放回连接池,除非下载完了所有数据,或者调用了response.close。
    • verify:开关,用于SSL证书认证,默认为True。
    • cert:用于设置保存本地SSL证书路径。

获取响应

当一个请求被发送后,会有一个response响应。requests同样为这个response赋予了相关方法:

  • response:响应对象。
  • response.status_code:请求返回状态码。
  • response.text:字符串形式的响应内容。
  • response.json():返回响应的是json类型的数据,如果响应的类型不是json,则抛出ValueError
  • response.content:二进制的响应内容。
  • response.iter_content(chunk_size):生成器,在stream=True的情况下,当遍历生成器时,以块的形式返回,也就是一块一块的遍历要下载的内容。避免了遇到大文件一次性的将内容读取到内存中的弊端,如果stream=False,全部数据作为一个块返回。chunk_size参数指定块大小。
  • response.iter_lines():生成器,当stream=True时,迭代响应数据,每次一行,也就是一行一行的遍历要下载的内容。同样避免了大文件一次性写入到内存中的问题。当然,该方法不安全。至于为啥不安全,咱也不知道,咱也不敢问,主要是官网上没说!经查,如果多次调用该方法,iter_lines不保证重新进入时的安全性,因此可能会导致部分收到的数据丢失。
  • response.cookies:响应中的cookie信息。
  • response.cookies.get_dict():以字典的形式返回cookies信息。
  • response.cookies.items():以列表的形式返回cookies信息。
  • response.headers:响应头字典。取其中的指定key,response.headers.get(‘Content-Type‘, ‘哎呀,没取到!‘)
  • response.reqeust:请求类型。
  • response.url:请求的URL。
  • response.reason:响应HTTP状态的文本原因。
  • response.encoding:响应结果的编码方式。
  • response.encoding = “gbk”:修该响应编码方式,比如说响应结果的编码是utf-8,通过这么response.encoding = “gbk”指定为gbk。
  • response.apparent_encoding:根据响应字节流中去chardet库中匹配,返回编码方式,并不保证100%准确。
  • response.history:以列表的形式返回请求记录。列表内的请求以最老到最新排序。

 

获取7160网站的图片:获取当前页面的图片

技术图片
‘‘‘
http://www.7160.com/meishitupian/list_15_2.html
pip install beautifulsoup4  # 需要先安装此模块

‘‘‘

# 0. 导包
import os
import requests
from bs4 import BeautifulSoup  # 不同于其他模块,BeautifulSoup导入的时候不是直接import BeautifulSoup,直接导入会报错

#  在代码之前先定义全局常量
# os.path.abspath(__file__) 指当前文件的绝对路径
# os.path.dirname() 指父级目录的绝对路径
# os.path.dirname(os.path.abspath(__file__)) 指以当前文件的绝对路径找到父级目录的绝对路径
BASE_DIR = os.path.dirname(os.path.abspath(__file__))

# 1. 模拟浏览器发请求
response = requests.get(url=http://www.7160.com/meishitupian/list_15_2.html)
# print(response.status_code)  # 查看是否请求成功
# print(response.encoding)  # 查看编码类型
response.encoding = gbk  # 获取的文件信息是乱码,需要转码,可以尝试多种,直到正常显示

# 2. 获取字符串形式的请求内容,方便后续代码中使用
text = response.text

# 3. 使用bs4库解析请求,需要传入需要解析的文件,指定解析器
soup = BeautifulSoup(text, html.parser)  # 需要解析的文件是text, 是文本类型的,所以使用html.parser:解析器,负责解析文本
# print(soup)  # 结果同text相同,拿到解析结果去分析和操作数据

# 从整个文本中进一步缩小定位范围
# 查找name是div盒子,这个div中class的名字为news_bom-left的内容
# find方法中此类参数的固定写法
div_obj = soup.find(name=div, attrs={"class": "news_bom-left"})

# 4. 定位图片位置
li_list = div_obj.find_all(name="li")  # 从这个盒子中找所有li标签

# 图片要一张一张去处理并保存,所以要循环,
for li in li_list:
    # 5. 获取图片链接
    img = li.find(name=img)  # 查看这一条li中name是img的标签
    src = img.get("src")  # 从这个标签中获取图片的链接
    
    # 6. 使用requests模块向图片链接发请求
    res = requests.get(url=src)
    
    # 7. 保存图片到本地
    # os.path.join 是拼接路径,BASE_DIR指当前文件的父级目录的绝对路径
    # src.rsplit(‘/‘, 1)[-1] 是切割了图片地址,使用切割后的字符串作为要保存的文件的名字,也可以用其他的字段进行处理作为文件名
    # 这一步实际就是给即将保存的文件安排一个路径,这个路径就是当前文件所处的父文件夹下的7160这个文件夹
    # 注意:‘7160‘这个文件夹要先创建好,不然会报错
    file_path = os.path.join(BASE_DIR, 7160, src.rsplit(/, 1)[-1])
    with open(file_path, wb) as f:  # 图片信息是二进制形式,所以要用wb写入
        f.write(res.content)  # 将请求图片获取到的二进制响应内容写入文件中
    # break  # 调试时候用,只获取第一条信息,调试结束,注释掉break,即可全部获取到文件
使用requests和BeautifulSoup获取图片并保存到本地--一次性全部写入

使用此种方法有个弊端,如果文件过大,可能会导致下载到本地之后,导致本地存储空间不足,下载完毕之后会有部分文件丢失

如果是大文件或者多个文件,建议循环下载,如果存储空间不足,之前的文件不会缺失

技术图片
# stream默认情况下是false,会立即开始下载文件并存放到内存当中
# 当把stream的参数设置成True时,它不会立即开始下载,当你使用iter_content遍历内容或访问内容属性时才开始下载
response = requests.get(url_file, stream=True)
with open("file_path", "wb") as f:
# iter_content:一块一块的遍历要下载的内容,chunk_size是每一块的字节数,结合使用可以防止占用过多的内存
# 循环下载文件,按照chunk_size设置的字节数,每次只下载这一大小的数据
    for i in response.iter_content(chunk_size=512):
            f.write(i)
使用iter_content方法按字节大小循环下载

 

获取天极网的图片:保存图片时有多级文件夹

技术图片
‘‘‘
http://pic.yesky.com/c/6_3655_5.shtml
需求:
将图片上的文件按页面的分类保存,一共两级文件夹,保存的格式如下
               ‘tianji‘                # 一级文件夹
                  ‘赵薇图片‘            # 二级文件夹
                      ‘赵薇图片111‘     # 具体图片文件
                      ‘赵薇图片222‘
                      ‘赵薇图片333‘
                  ‘林心如图片‘
                  ‘李沁图片‘
‘‘‘
import os
import requests
from bs4 import BeautifulSoup

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# 1、向指定连接发请求
response = requests.get(url=http://pic.yesky.com/c/6_3655_5.shtml)

# 2、使用bs4解析requests请求的响应文本
soup = BeautifulSoup(response.text, html.parser)   # 延伸可搜索lxml,学习python3解析库lxml
div_obj = soup.find(name=div, attrs={"class": "lb_box"})
dd_list = div_obj.find_all(name=dd)

for dd in dd_list:
    # 获取div中所有图片所在a标签的url
    a_url = dd.find(name=a).get(href)
    # 要先创建好‘tianji‘文件夹,再在此文件夹下创建N个二级文件夹用来存放图片
    path = os.path.join(BASE_DIR, tianji, dd.find(name=a).text)
    if not os.path.isdir(path):  # 如果不存在这个二级文件夹,则创建,不加这一步可能会报错
        os.mkdir(path)
    
    # 向url发请求
    a_response = requests.get(url=a_url)
    a_response.encoding = gbk

    # 拿到url中的text文本
    a_text = a_response.text
    son_soup = BeautifulSoup(a_text, html.parser)  # lxml
    son_div_obj = son_soup.find(name=div, attrs={"id": "scroll"})
    
    for img in son_div_obj.find_all(name=img):
        # 获取图片链接,并发请求
        son_src = img.get(src).replace(113x113, 740x-)  # 使用大图的像素替换图片链接中的小图像素,达到获取大图的目的
        son_response = requests.get(url=son_src)
        
        # 打开文件写入
        img_path = os.path.join(path, son_src.rsplit("/", 1)[-1])
        with open(img_path, wb) as f:
            f.write(son_response.content)
        break
    break
使用循环内部套循环获取二级页面的图片,并分两级文件夹保存

 

获取汽车之家图片: 多页面多图片获取

顺序获取,不考虑时间,不考虑分页,只获取第一页

技术图片1、爬取汽车之家新闻页第一页

 

顺序获取前20页,将获取图片的代码封装成了函数,需要获取多少页只需简单修改参数就行

技术图片
import os, time
import requests   # 模拟浏览器发请求
from bs4 import BeautifulSoup   # 解析请求结果,也就是去请求结果中,取数据

url = "https://www.autohome.com.cn/all/"
BASE_DIR = os.path.dirname(os.path.abspath(__file__))

def spider(num):
    
    # 1. 使用requests模块向指定地址发请求,获取请求结果
    response = requests.get(url="https://www.autohome.com.cn/all/{}/#liststart".format(num))
    # 2. 转码
    response.encoding = "gbk"
    
    # 3. 使用bs4取数据,解析请求结果
    soup = BeautifulSoup(response.text, "html.parser")
    div_obj = soup.find(name=div, attrs={"id": "auto-channel-lazyload-article"})
    img_list = div_obj.find_all(name="img")
    
    for img in img_list:
        # 获取图片的url,因为源地址是不全的,我们要拼接
        img_url = "https:" + img.get("src")
        # 使用requests模块向图片地址发请求,获取图片数据,bytes
        img_response = requests.get(url=img_url)
        # 制作保存图片的路径
        file_path = os.path.join(BASE_DIR, 222, img_url.rsplit(/, 1)[-1])
        # 将bytes类型的数据保存到本地
        with open(file_path, wb) as f:
            f.write(img_response.content)
        print({} 爬取完毕.format(img_url))  # 下载时在控制台输入信息提示


if __name__ == __main__:
    start = time.time()  # 开始执行时 当前时间的时间戳
    for num in range(1, 20):  # 循环获取1-20页的图片
        spider(num)  # 获取当前页的图片信息
    print(time.time() - start)  # 结束时的时间戳-开始时间的时间戳,计算差即用时时长
顺序获取汽车之家新闻页前20页--封装成了函数

 

通过线程池获取,无顺序,但是提高了效率,缩短了获取时间

# 1、导包
from concurrent.futures import ThreadPoolExecutor  # 线程池

# 2、在代码中需要使用的位置上方加这一行
# 表示线程开始,将需要使用线程池的代码放进来
t = ThreadPoolExecutor(max_workers=10)  # max_workers表示线程数

# 3、在代码中结束的位置下方加这一行
# 当代码执行完,结束线程,不再往进加任务
t.shutdown()  

 

 

技术图片
import os, time
import requests   # 模拟浏览器发请求
from bs4 import BeautifulSoup   # 解析请求结果,也就是去请求结果中,取数据
from concurrent.futures import ThreadPoolExecutor  # 线程池

BASE_DIR = os.path.dirname(os.path.abspath(__file__))


def spider(num):
    # 1. 使用requests模块向指定地址发请求
    # response = requests.request(method=‘get‘, url=url)
    page_url = "https://www.autohome.com.cn/all/{}/#liststart".format(num)
    response = requests.get(url=page_url)
    # 2. 获取请求结果
    # print(response.encoding)  # ISO-8859-1
    response.encoding = "gbk"
    # print(response.text)
    # 3. 使用bs4取数据,解析请求结果
    soup = BeautifulSoup(response.text, "html.parser")
    div_obj = soup.find(name=div, attrs={"id": "auto-channel-lazyload-article"})
    img_list = div_obj.find_all(name="img")

    for img in img_list:
        # 获取图片的url,因为源地址是不全的,我们要拼接
        img_url = "https:" + img.get("src")
        # 使用requests模块向图片地址发请求,获取图片数据,bytes
        img_response = requests.get(url=img_url)
        # 制作保存图片的路径
        file_path = os.path.join(BASE_DIR, 222, img_url.rsplit(/, 1)[-1])
        # 将bytes类型的数据保存到本地
        with open(file_path, wb) as f:
            f.write(img_response.content)
        print(正在爬取{} 页 中的{}图片 爬取完毕.format(page_url, img_url))

if __name__ == __main__:
    start = time.time()
    t = ThreadPoolExecutor(max_workers=10)  # 10个线程,每次10个线程去获取数据,可提高效率
    for num in range(1, 20):
        t.submit(spider, num)
    t.shutdown()  # 线程结束。当循环结束,结束线程,不再往进加任务
    print(time.time() - start)
线程池获取汽车之家新闻页前20页图片--提高效率

获取图片并保存

标签:ecc   分析   进制   erro   lap   pid   测试   chunk   out   

原文地址:https://www.cnblogs.com/caoyinshan/p/12072847.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!