标签:rap red pat cti model explain each 转换 example
graph model explaination:
https://www.lintcode.com/help/graph
Example 1:
Input: {1,2,4#2,4#3,5#4#5#6,5}
Output: [[1,2,4],[3,5,6]]
Explanation:
1----->2 3-->5
\ | ^
\ | |
\ | 6
\ v
->4
Example 2:
Input: {1,2#2,3#3,1} Output: [[1,2,3]]
思路:
可以把每条有向边看成无向边, 就等同于在无向图中寻找联通块.
两种做法: 1. BFS/DFS 2. 并查集 (但由于输入数据是有向边, 所以使用并查集更合适, 否则还需要先把有向边转换成无向边)
public class Solution { class UnionFind { HashMap<Integer, Integer> father = new HashMap<Integer, Integer>(); UnionFind(HashSet<Integer> hashSet) { for(Integer now : hashSet) { father.put(now, now); } } int find(int x) { int parent = father.get(x); while(parent != father.get(parent)) { parent = father.get(parent); } return parent; } int compressed_find(int x) { int parent = father.get(x); while (parent != father.get(parent)) { parent = father.get(parent); } int temp = -1; int fa = father.get(x); while (fa != father.get(fa)) { temp = father.get(fa); father.put(fa, parent) ; fa = temp; } return parent; } void union(int x, int y) { int fa_x = find(x); int fa_y = find(y); if (fa_x != fa_y) father.put(fa_x, fa_y); } } List<List<Integer>> print(HashSet<Integer> hashSet, UnionFind uf) { List<List<Integer>> ans = new ArrayList<List<Integer>>(); HashMap<Integer, List <Integer>> hashMap = new HashMap<Integer, List<Integer>>(); for (int i : hashSet) { int fa = uf.find(i); if (!hashMap.containsKey(fa)) { hashMap.put(fa, new ArrayList<Integer>()); } List<Integer> now = hashMap.get(fa); now.add(i); hashMap.put(fa, now); } for (List<Integer> now: hashMap.values()) { Collections.sort(now); ans.add(now); } return ans; } public List<List<Integer>> connectedSet2(ArrayList<DirectedGraphNode> nodes) { HashSet<Integer> hashSet = new HashSet<Integer>(); for (DirectedGraphNode now : nodes) { hashSet.add(now.label); for (DirectedGraphNode neighbour : now.neighbors) { hashSet.add(neighbour.label); } } UnionFind uf = new UnionFind(hashSet); for(DirectedGraphNode now : nodes) { for(DirectedGraphNode neighbour : now.neighbors) { int fnow = uf.find(now.label); int fneighbour = uf.find(neighbour.label); if (fnow != fneighbour) { uf.union(now.label, neighbour.label); } } } return print(hashSet , uf); } }
Find the Weak Connected Component in the Directed Graph
标签:rap red pat cti model explain each 转换 example
原文地址:https://www.cnblogs.com/FLAGyuri/p/12078600.html