标签:cto abs 数值 variable error atl tla sum for
1.插值函数
%%n次插值多项式 %%X是插值节点,n是插值多项式次数,若已知函数表达式则attribute为0,未知函数表达式但已知函数值时为1 function IPn = Interpolation_polynomials_of_degree_n(X,Y,precision,attribute) global MAX;global m;global n;global i; X = sort(X); [m,n] = size(X);MAX = max([m,n]);error = []; if attribute == 0 F = ones(1,MAX); for i = 1:MAX F(i) = subs(Y,X(i)); end sum = 0; for i = 1:MAX sum = sum+F(i)*Interpolation_basis_fun(X,i-1); end IPn = vpa(collect(sum),4); for i = 1:MAX error(i) = abs(F(i)-subs(sum,X(i))); end %%作图 h=figure; set(h,‘color‘,‘w‘); t = min(X):(max(X)-min(X))/precision:max(X); Yreal = subs(Y,t); T = subs(sum,t); plot(t,Yreal,‘b‘,t,T,‘g‘,X,F,‘r*‘); grid on title(‘拉格朗日插值‘); xlabel(‘Variable x‘); ylabel(‘Variable y‘); legend(‘Yreal:真实图像‘,‘T:拟合多项式图像‘,‘F:实际数据‘); %%显示坐标 for i = 1:MAX text(X(i),F(i),[‘(‘,num2str(X(i)),‘,‘,num2str(F(i)),‘)‘],‘color‘,[0.02 0.79 0.99]); end disp(‘误差值为‘);error elseif attribute == 1 sum = 0; for i = 1:MAX sum = sum+Y(i)*Interpolation_basis_fun(X,i-1); end IPn = vpa(collect(sum),4); h=figure; set(h,‘color‘,‘w‘); t = min(X):(max(X)-min(X))/precision:max(X); T = subs(sum,t); plot(X,Y,‘g*‘,t,T,‘b‘); grid on title(‘拉格朗日插值‘); xlabel(‘Variable x‘); ylabel(‘Variable y‘); legend(‘Y:已知数据‘,‘T:拟合多项式图像‘); for i = 1:MAX text(X(i),Y(i),[‘(‘,num2str(X(i)),‘,‘,num2str(Y(i)),‘)‘],‘color‘,[0.02 0.79 0.99]); end end end
2.插值基函数
%%插值基函数 function IBF = Interpolation_basis_fun(X,k) [m,n] = size(X);MAX = max([m,n]); X = sort(X); mult_x = 1;mult_v = 1; for i = 1:MAX syms x; if i ~= k+1 mult_v = mult_v*(X(k+1)-X(i)); mult_x = mult_x*(x-X(i)); end end IBF = mult_x/mult_v; end
3.插值余项与误差界
%%插值余项与误差限(仅能计算已知的函数表达式下的余项) function MI = More_than_the_interpolation(X,f,xi,precision) X = sort(X); a = min(X);b = max(X); disp(‘xi应在以下区间中:‘); [a,b] [m,n] = size(X);MAX = max([m,n]); Df = diff(f,MAX);Df_value = subs(Df,xi); MI = vpa(collect(Df_value*omiga(X)/factorial(MAX)),4); %%误差限 Df_max = max(subs(Df,X)); R_x = vpa(collect(Df_max*abs(omiga(X))/factorial(MAX)),4); disp(‘误差上限为:‘); R_x %%作图区 t = a:(b-a)/precision:b; T1 = subs(R_x,t); T2 = subs(MI,t); h=figure; set(h,‘color‘,‘w‘); plot(t,T1,‘r--‘,t,T2,‘g‘); grid on title(‘误差图像‘); xlabel(‘Variable x‘); ylabel(‘Variable y‘); legend(‘T1:误差上限‘,‘T2:指定误差限‘); function fac = Factorial(n) if n == 0 fac = 1; else fac = Factorial(n-1)*n; end end end
4.连乘多项式
function ox = omiga(X) [m,n] = size(X);MAX = max([m,n]); syms x; mult = 1; for i = 1:MAX mult = mult*(x-X(i)); end ox=mult; end
5.例子
clear all clc precision=500; X=1:1:9; R1=reshape(rand(9),1,9^2); R2=reshape(rand(18),1,18^2); R=zeros(1,9); for i=1:9 R(i)=R1(9*i)*R2(18*i)*100; end %%已知函数 disp(‘已知函数的表达式‘); syms x; f=x*exp(-x^2)+log(abs(exp(x)+precision*sin(x))); Interpolation_polynomials_of_degree_n(X,f,precision,0) %%已知函数数值 disp(‘已知函数值‘); Interpolation_polynomials_of_degree_n(X,R,precision,1)
结果
已知函数的表达式 误差值为 error = 0 0 0 0 0 0 0 0 0 ans = 1.621e-5*x^8 + 0.002542*x^7 - 0.1033*x^6 + 1.566*x^5 - 12.15*x^4 + 52.22*x^3 - 122.5*x^2 + 141.6*x - 54.27 已知函数值 ans = - 0.06151*x^8 + 2.428*x^7 - 40.08*x^6 + 359.3*x^5 - 1899.0*x^4 + 6000.0*x^3 - 10950.0*x^2 + 10420.0*x - 3849.0
图像如下
标签:cto abs 数值 variable error atl tla sum for
原文地址:https://www.cnblogs.com/guliangt/p/12112802.html