码迷,mamicode.com
首页 > 其他好文 > 详细

【数据分析&数据挖掘】异常值的判断与去除——3σ & 箱线图分析

时间:2019-12-29 20:08:19      阅读:275      评论:0      收藏:0      [点我收藏+]

标签:def   加载   标准   判断   amount   异常   mount   ntile   read   

 1 import pandas as pd
 2 
 3 # 异常值 ——远离正常值范围的错误值
 4 # 异常值 ——删掉
 5 
 6 # 异常值判断 ——3σ 箱线图分析
 7 
 8 # 3σ 接住标准正态部分得到的规律——99.73%都在(μ-3α,μ+3α)之间,超过这个范围的数据认为是异常的
 9 
10 def three_sigma(data):
11     """
12     进行3sigma异常值剔除
13     :param data: 原数据——series
14     :return: bool数组
15     """
16 
17     # 上限
18     up = data.mean() + 3 * data.std()
19     # 下线
20     low = data.mean() - 3 * data.std()
21 
22     # 在上限与下限之间的数据是正常的
23     bool_index = (data < up) & (data > low)
24 
25     return bool_index
26 
27 
28 def box_analysis(data):
29     """
30     箱线图分析去除异常值
31     :param data: 原数据——series
32     :return: bool数组
33     """
34     # 上四分位数
35     qu = data.quantile(q=0.75)
36     # 下四分位数
37     ql = data.quantile(q=0.25)
38     # 计算四分位间距
39     iqr = qu - ql
40 
41     # 上限
42     up = qu + 1.5 * iqr
43     # 下限
44     low = ql - 1.5 * iqr
45 
46     bool_index = (data < up) & (data > low)
47 
48     return bool_index
49 
50 
51 # 验证——加载detail
52 detail = pd.read_excel("../day05/meal_order_detail.xlsx")
53 print("detail的列索引: \n", detail.columns)
54 print("detail的形状: \n", detail.shape)
55 
56 # 对amounts列进行异常值处理
57 bool_index = three_sigma(detail.loc[:, "amounts"])
58 bool_index = box_analysis(detail.loc[:, "amounts"])
59 print("bool_index: \n", bool_index)
60 
61 # 获取异常值处理之后的结果
62 detail = detail.loc[bool_index, :]
63 print("异常值处理之后的结果: \n", detail.shape)

【数据分析&数据挖掘】异常值的判断与去除——3σ & 箱线图分析

标签:def   加载   标准   判断   amount   异常   mount   ntile   read   

原文地址:https://www.cnblogs.com/Tree0108/p/12116099.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!