标签:分析 对比 删除 没有 drop numpy col account cat
1 import pandas as pd 2 import numpy as np 3 4 # 加载数据——detail 5 detail_1 = pd.read_excel("./meal_order_detail.xlsx", sheetname=0) 6 detail_2 = pd.read_excel("./meal_order_detail.xlsx", sheetname=1) 7 detail_3 = pd.read_excel("./meal_order_detail.xlsx", sheetname=2) 8 9 print("detail_1 的形状: \n", detail_1.shape) 10 print("detail_1 的列索引: \n", detail_1.columns) 11 print("detail_2 的形状: \n", detail_2.shape) 12 print("detail_2 的列索引: \n", detail_2.columns) 13 print("detail_3 的形状: \n", detail_3.shape) 14 print("detail_3 的列索引: \n", detail_3.columns) 15 16 print("~"*60) 17 # 将detail_2, detail_3直接追加到detaiL_1下面 18 detail = pd.concat((detail_1, detail_2, detail_3), axis=0, join="inner") 19 print("detail的形状;\n", detail.shape) 20 21 22 # 加载info 23 info = pd.read_csv("./meal_order_info.csv", encoding="ansi") 24 print("info: \n", info.shape) 25 26 # info与detail进行主键拼接 27 res = pd.merge(left=detail, right=info, left_on="order_id", right_on="info_id", how="inner") 28 res = pd.merge(left=detail, right=info, left_on="order_id", right_on="info_id", how="left") 29 print("info与detail主键拼接的结果为: \n", res.shape) 30 print("res的列名: \n", res.columns) 31 32 33 # 加载users 34 users = pd.read_excel("./users.xlsx") 35 # info与detail进行主键拼接的结果与users进行主键拼接 36 res = pd.merge(left=res, right=users, left_on="name", right_on="ACCOUNT", how="inner") 37 print("最终进行主键拼接的结果: \n", res) 38 print("最终res的列名称: \n", res.columns) 39 40 print("name与ACCOUNT对比相同", np.all(res.loc[:, "name"] == res.loc[:, "ACCOUNT"])) 41 print("order_id与info_id对比相同", np.all(res.loc[:, "order_id"] == res.loc[:, "info_id"])) 42 print("emp_id_x与emp_id_y对比相同", np.all(res.loc[:, "emp_id_x"] == res.loc[:, "emp_id_y"])) 43 44 res.drop(labels=["ACCOUNT", "info_id", "emp_id_y"], axis=1, inplace=True) 45 46 print("删除3列之后的结果: \n", res.shape) 47 print("删除3列之后的结果: \n", res.columns) 48 49 drop_list = [] 50 for column in res.columns: 51 # 统计每一列的非空数据的数量 52 res_count = res.loc[:, column].count() 53 # 如果整列非空数据的数量为0,意味着整列都是空的 54 if res_count == 0: 55 drop_list.append(column) 56 57 # 删除整列为空的列 58 res.drop(labels=drop_list, axis=1, inplace=True) 59 print("去除整列为空的数据之后的结果: \n", res.shape) 60 print("去除整列为空的数据之后的结果: \n", res.columns) 61 62 drop_dup_list = [] 63 # 如果整列数据完全相同——该列, 该属性对于区分各列没有意义 64 for column in res.columns: 65 res_ = res.drop_duplicates(subset=column, inplace=False) 66 if res_.shape[0] == 1: 67 print("res_.shape[0]: \n", res_.shape[0]) 68 drop_dup_list.append(column) 69 70 # 删除全部一样的列 71 res.drop(labels=drop_dup_list, axis=1, inplace=True) 72 print("最终的结果: \n", res.shape) 73 print("最终的结果: \n", res.columns)
标签:分析 对比 删除 没有 drop numpy col account cat
原文地址:https://www.cnblogs.com/Tree0108/p/12116107.html