码迷,mamicode.com
首页 > 其他好文 > 详细

【数据分析&数据挖掘】数据合并和拼接案例

时间:2019-12-29 20:19:28      阅读:219      评论:0      收藏:0      [点我收藏+]

标签:分析   对比   删除   没有   drop   numpy   col   account   cat   

 1 import pandas as pd
 2 import numpy as np
 3 
 4 # 加载数据——detail
 5 detail_1 = pd.read_excel("./meal_order_detail.xlsx", sheetname=0)
 6 detail_2 = pd.read_excel("./meal_order_detail.xlsx", sheetname=1)
 7 detail_3 = pd.read_excel("./meal_order_detail.xlsx", sheetname=2)
 8 
 9 print("detail_1 的形状: \n", detail_1.shape)
10 print("detail_1 的列索引: \n", detail_1.columns)
11 print("detail_2 的形状: \n", detail_2.shape)
12 print("detail_2 的列索引: \n", detail_2.columns)
13 print("detail_3 的形状: \n", detail_3.shape)
14 print("detail_3 的列索引: \n", detail_3.columns)
15 
16 print("~"*60)
17 # 将detail_2, detail_3直接追加到detaiL_1下面
18 detail = pd.concat((detail_1, detail_2, detail_3), axis=0, join="inner")
19 print("detail的形状;\n", detail.shape)
20 
21 
22 # 加载info
23 info = pd.read_csv("./meal_order_info.csv", encoding="ansi")
24 print("info: \n", info.shape)
25 
26 # info与detail进行主键拼接
27 res = pd.merge(left=detail, right=info, left_on="order_id", right_on="info_id", how="inner")
28 res = pd.merge(left=detail, right=info, left_on="order_id", right_on="info_id", how="left")
29 print("info与detail主键拼接的结果为: \n", res.shape)
30 print("res的列名: \n", res.columns)
31 
32 
33 # 加载users
34 users = pd.read_excel("./users.xlsx")
35 # info与detail进行主键拼接的结果与users进行主键拼接
36 res = pd.merge(left=res, right=users, left_on="name", right_on="ACCOUNT", how="inner")
37 print("最终进行主键拼接的结果: \n", res)
38 print("最终res的列名称: \n", res.columns)
39 
40 print("name与ACCOUNT对比相同", np.all(res.loc[:, "name"] == res.loc[:, "ACCOUNT"]))
41 print("order_id与info_id对比相同", np.all(res.loc[:, "order_id"] == res.loc[:, "info_id"]))
42 print("emp_id_x与emp_id_y对比相同", np.all(res.loc[:, "emp_id_x"] == res.loc[:, "emp_id_y"]))
43 
44 res.drop(labels=["ACCOUNT", "info_id", "emp_id_y"], axis=1, inplace=True)
45 
46 print("删除3列之后的结果: \n", res.shape)
47 print("删除3列之后的结果: \n", res.columns)
48 
49 drop_list = []
50 for column in res.columns:
51     # 统计每一列的非空数据的数量
52     res_count = res.loc[:, column].count()
53     # 如果整列非空数据的数量为0,意味着整列都是空的
54     if res_count == 0:
55         drop_list.append(column)
56 
57 # 删除整列为空的列
58 res.drop(labels=drop_list, axis=1, inplace=True)
59 print("去除整列为空的数据之后的结果: \n", res.shape)
60 print("去除整列为空的数据之后的结果: \n", res.columns)
61 
62 drop_dup_list = []
63 # 如果整列数据完全相同——该列, 该属性对于区分各列没有意义
64 for column in res.columns:
65     res_ = res.drop_duplicates(subset=column, inplace=False)
66     if res_.shape[0] == 1:
67         print("res_.shape[0]: \n", res_.shape[0])
68         drop_dup_list.append(column)
69 
70 # 删除全部一样的列
71 res.drop(labels=drop_dup_list, axis=1, inplace=True)
72 print("最终的结果: \n", res.shape)
73 print("最终的结果: \n", res.columns)

【数据分析&数据挖掘】数据合并和拼接案例

标签:分析   对比   删除   没有   drop   numpy   col   account   cat   

原文地址:https://www.cnblogs.com/Tree0108/p/12116107.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!