标签:war idg obs std 验证 criterion mon nod plot
为自行车租赁系统提供的数据,提供数据为2年内华盛顿按小时记录的自行车租赁数据。数据来源:
字段介绍:
datetime 日期(年月日时分秒)
season 季节。1为春季,2为夏季,3为秋季,4为冬季
hodliday 是否为假期。1代表是,0代表不是
workingday 是否为工作日。1代表是,0代表不是。
weather 天气。1天气晴朗或多云,2有雾和云/峰等,3小雪/小雨,闪电及多云。4大雨/冰雹/闪电和大雾/大雪。
temp 摄氏温度
atemp 人们感觉的温度
humidity 湿度
windspeed 风速
casual 没有注册的预定自行车的人数
registered 注册了的预定自行车的人数
count 总租车人数
#最后三个字段3个不属于特征
通过pandas导入数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
#pandas数据读入
df_train = pd.read_csv("kaggle_bike_competition_train.csv",header=0)
瞅一眼看看数据格式,这里打印前5行:
df_train.head(5)
查看一下数据有没有缺省值
print(df_train.shape)
# 看看有没有缺省值
print(df_train.count())
"""
(10886, 12)
datetime 10886
season 10886
holiday 10886
workingday 10886
weather 10886
temp 10886
atemp 10886
humidity 10886
windspeed 10886
casual 10886
registered 10886
count 10886
dtype: int64
"""
把月,日和小时单独拎出来放到df_train中:
df_train['month'] = pd.DatetimeIndex(df_train.datetime).month
df_train['day'] = pd.DatetimeIndex(df_train.datetime).dayofweek
df_train['hour'] = pd.DatetimeIndex(df_train.datetime).hour
将不属于特征的字段去掉,这里是datetime,casual,registered
#datetime 通过上一步拆分月,日,时更加形象
#casual,registered为目标预测数据
df_train = df_train.drop(['datetime','casual','registered'],axis=1)
再查看数据
df_train.head(5)
下面的过程会让你看到,其实应用机器学习算法的过程,多半是在调参,各种不同的参数会带来不同的结果(比如正则化系数,比如决策树类的算法的树深和颗树,比如距离判定准则等等等)
我们使用交叉验证的方式(交叉验证集约占全部数据的20%)来看看模型效果,使用以上三个模型,都跑3趟,看看它们平均值评分结果:
from sklearn import linear_model#岭回归
from sklearn import model_selection
from sklearn import svm#向量回归
from sklearn.ensemble import RandomForestRegressor#随机森林回归包
from sklearn.model_selection import learning_curve
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import explained_variance_score
# 切分数据(训练集和测试集)
cv = model_selection.ShuffleSplit(n_splits=3,test_size=0.2,random_state=0)
cv_split = cv.split(df_train_data)
print("岭回归")
for train,test in cv_split:
svc = linear_model.Ridge().fit(df_train_data[train], df_train_target[train])
print("train score: {0:.3f}, test score: {1:.3f}\n".format(
svc.score(df_train_data[train], df_train_target[train]),
svc.score(df_train_data[test], df_train_target[test])))
print("支持向量回归/SVR(kernel='rbf',C=10,gamma=.001)")
for train,test in cv.split(df_train_data):
svc = svm.SVR(kernel ='rbf', C = 10, gamma = .001).fit(df_train_data[train], df_train_target[train])
print("train score: {0:.3f}, test score: {1:.3f}\n".format(
svc.score(df_train_data[train], df_train_target[train]),
svc.score(df_train_data[test], df_train_target[test])))
print("随机森林回归/Random Forest(n_estimators = 100)")
for train, test in cv.split(df_train_data):
svc = RandomForestRegressor(n_estimators = 100).fit(df_train_data[train], df_train_target[train])
print("train score: {0:.3f}, test score: {1:.3f}\n".format(
svc.score(df_train_data[train], df_train_target[train]),
svc.score(df_train_data[test], df_train_target[test])))
岭回归
train score: 0.339, test score: 0.332
train score: 0.330, test score: 0.370
train score: 0.342, test score: 0.320
支持向量回归/SVR(kernel='rbf',C=10,gamma=.001)
train score: 0.417, test score: 0.408
train score: 0.406, test score: 0.452
train score: 0.419, test score: 0.390
随机森林回归/Random Forest(n_estimators = 100)
train score: 0.982, test score: 0.864
train score: 0.982, test score: 0.880
train score: 0.981, test score: 0.869
不用自己折腾,通过GridSearch,帮我们调节最佳参数
X = df_train_data
y = df_train_target
X_train, X_test, y_train, y_test = model_selection.train_test_split(
X, y, test_size=0.2, random_state=0)
tuned_parameters = [{'n_estimators':[10,100,500]}]
scores = ['r2']
for score in scores:
print(score)
clf = GridSearchCV(RandomForestRegressor(), tuned_parameters, cv=5, scoring=score)
clf.fit(X_train, y_train)
#best_estimator_ returns the best estimator chosen by the search
print(clf.best_estimator_)
print("得分分别是:")
#grid_scores_的返回值:
# * a dict of parameter settings
# * the mean score over the cross-validation folds
# * the list of scores for each fold
for mean_score in clf.cv_results_["mean_test_score"]:
print("%0.3f"
% (mean_score,))
#得到结果需要花费些时间
r2
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=None,
oob_score=False, random_state=None, verbose=0, warm_start=False)
得分分别是:
0.846
0.861
0.863
可视化展示,看看模型学习曲线是否过拟合或欠拟合
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
title = "Learning Curves (Random Forest, n_estimators = 100)"
cv = model_selection.ShuffleSplit(n_splits=3,test_size=0.2,random_state=0)
cv_split = cv.split(df_train_data)
estimator = RandomForestRegressor(n_estimators = 100)
plot_learning_curve(estimator, title, X, y, (0.0, 1.01), cv=cv_split, n_jobs=4)
plt.show()
随机森林算法学习能力比较强,由图可以发现,训练集和测试机分差较大,过拟合很明显,尝试缓解过拟合(未必成功):
print("随机森林回归/Random Forest(n_estimators=200, max_features=0.6, max_depth=15)")
cv = model_selection.ShuffleSplit(n_splits=6,test_size=0.2,random_state=0)
for train, test in cv.split(df_train_data):
svc = RandomForestRegressor(n_estimators = 200, max_features=0.6, max_depth=15).fit(df_train_data[train], df_train_target[train])
print("train score: {0:.3f}, test score: {1:.3f}\n".format(
svc.score(df_train_data[train], df_train_target[train]), svc.score(df_train_data[test], df_train_target[test])))
随机森林回归/Random Forest(n_estimators=200, max_features=0.6, max_depth=15)
train score: 0.965, test score: 0.868
train score: 0.966, test score: 0.885
train score: 0.966, test score: 0.873
train score: 0.965, test score: 0.876
train score: 0.966, test score: 0.869
train score: 0.966, test score: 0.872
df_train_origin.groupby('temp').mean().plot(y='count', marker='o')
plt.show()
df_train_origin.groupby('windspeed').mean().plot(y='count', marker='o')
plt.show()
# 湿度
df_train_origin.groupby('humidity').mean().plot(y='count', marker='o')
plt.show()
df_train_origin.plot(x='temp', y='humidity', kind='scatter')
plt.show()
# scatter一下各个维度
fig, axs = plt.subplots(2, 3, sharey=True)
df_train_origin.plot(kind='scatter', x='temp', y='count', ax=axs[0, 0], figsize=(16, 8), color='magenta')
df_train_origin.plot(kind='scatter', x='atemp', y='count', ax=axs[0, 1], color='cyan')
df_train_origin.plot(kind='scatter', x='humidity', y='count', ax=axs[0, 2], color='red')
df_train_origin.plot(kind='scatter', x='windspeed', y='count', ax=axs[1, 0], color='yellow')
df_train_origin.plot(kind='scatter', x='month', y='count', ax=axs[1, 1], color='blue')
df_train_origin.plot(kind='scatter', x='hour', y='count', ax=axs[1, 2], color='green')
标签:war idg obs std 验证 criterion mon nod plot
原文地址:https://www.cnblogs.com/xujunkai/p/12116959.html