标签:初始 div mat log fun highlight product max end
1.代码
%%共轭梯度法(用于求解正定对称方程组)
%%线性方程组M*X = b,M是方阵,X0是初始解向量,epsilon是控制精度
function CGM = Conjugate_gradient_method(M,b,X0,epsilon)
m = size(M);up = 1000;e = floor(abs(log(epsilon)));
X(:,1) = X0;
r(:,1) = b-M*X0;p(:,1) = r(:,1);
for k = 1:up
alpha = Inner_product(r(:,k),r(:,k))/Inner_product(p(:,k),M*p(:,k));
X(:,k+1) = X(:,k)+alpha*p(:,k);
r(:,k+1) = r(:,k)-alpha*M*p(:,k);
beta(:,k) = Inner_product(r(:,k+1),r(:,k+1))/Inner_product(r(:,k),r(:,k));
p(:,k+1) = r(:,k+1)+beta(:,k)*p(:,k);
X_delta(:,k) = X(:,k+1)-X(:,k);
if sqrt(Inner_product(X_delta(:,k),M*X_delta(:,k))) < epsilon
break;
end
end
disp(‘迭代次数为:‘);
k-1
CGM = vpa(X(:,k),e);
%%内积
function IP = Inner_product(M1,M2)
MAX = max(size(M1));
sum = 0;
for i = 1:MAX
sum = sum+M1(i)*M2(i);
end
IP = sum;
end
end
2.例子
迭代次数为:
ans =
2
S =
-2.12121212
-0.454545455
1.21212121
2.87878788
ans =
-2.1212
-0.4545
1.2121
2.8788
>>
标签:初始 div mat log fun highlight product max end
原文地址:https://www.cnblogs.com/guliangt/p/12119299.html