码迷,mamicode.com
首页 > 其他好文 > 详细

关于组合数

时间:2019-12-30 14:34:19      阅读:85      评论:0      收藏:0      [点我收藏+]

标签:理解   利用   定义   个数   方案   组合   乘法   $$   就是   

定义

  $\large\binom nk$ :$n$ 个不同物品选取其中 $k$ 个物品的不同方案数,也可以写成 $C_n^k$。

组合数的阶乘形式

  如果要知道求组合数的公式,那么要从排列数说起。

  排列数:从 $n$ 个不同物品中有顺序地选出 $k$ 个物品,那么不同方案数为:

$$\prod_{i=n-k+1}^n i$$

  写成阶乘的形式:

$$\frac{n!}{(n-k)!}$$

  这很好理解,就是先从 $n$ 个物品中挑选出一个物品,再从剩余 $n-1$ 个物品再挑选另一个,……,最后在所剩的 $n-k+1$ 个物品中再挑一个物品,利用乘法原理可以求出如上方案数。

  组合数与排列数的差异在于,组合数的选取方案是没有顺序的,所以组合数的计算方式就是排列数除以挑选 $k$ 个物品的不同排列个数 $k!$。

  所以组合数可以和阶乘展开式互相转换:

$$\binom nk = \frac{n!}{k!\;(n-k)!}$$

关于组合数

标签:理解   利用   定义   个数   方案   组合   乘法   $$   就是   

原文地址:https://www.cnblogs.com/zengpeichen/p/12119186.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!