标签:models mode min lis 神经网络 uil 图片 public mil
首先非常感谢 zhouzaihang:https://www.52pojie.cn/forum.php?mod=viewthread&tid=863608
环境:python、python-opencv、keras、tensorflow
其他库,可以安装anaconda,差不多的库都装好了的。
训练数据:fer2013.csv
下载地址:链接:https://pan.baidu.com/s/1Ac5XBue0ahLOkIXwa7W77g 提取码:qrue
总流程:
第一步:数据预处理:fer2013.csv = train.csv +test.csv +val.csv ;同时还原出图像数据。
标签emotion_labels = [‘angry‘, ‘disgust‘, ‘fear‘, ‘happy‘, ‘sad‘, ‘surprise‘, ‘neutral‘]对应0-6命名的文件夹。
代码:
import csv import os from PIL import Image import numpy as np # 读、写数据的地址 data_path = os.getcwd() + "/data/" csv_file = data_path + ‘fer2013.csv‘ # 读数据集地址 train_csv = data_path + ‘train.csv‘ # 拆数据集保存地址 val_csv = data_path + ‘val.csv‘ test_csv = data_path + ‘test.csv‘ # csv文件像素保存为图像的文件夹名称 train_set = os.path.join(data_path, ‘train‘) val_set = os.path.join(data_path, ‘val‘) test_set = os.path.join(data_path, ‘test‘) # 开始整理数据集:读 with open(csv_file) as f: csv_r = csv.reader(f) header = next(csv_r) print(header) rows = [row for row in csv_r] trn = [row[:-1] for row in rows if row[-1] == ‘Training‘] csv.writer(open(train_csv, ‘w+‘), lineterminator=‘\n‘).writerows([header[:-1]] + trn) print(len(trn)) val = [row[:-1] for row in rows if row[-1] == ‘PublicTest‘] csv.writer(open(val_csv, ‘w+‘), lineterminator=‘\n‘).writerows([header[:-1]] + val) print(len(val)) tst = [row[:-1] for row in rows if row[-1] == ‘PrivateTest‘] csv.writer(open(test_csv, ‘w+‘), lineterminator=‘\n‘).writerows([header[:-1]] + tst) print(len(tst)) for save_path, csv_file in [(train_set, train_csv), (val_set, val_csv), (test_set, test_csv)]: if not os.path.exists(save_path): os.makedirs(save_path) num = 1 with open(csv_file) as f: csv_r = csv.reader(f) header = next(csv_r) for i, (label, pixel) in enumerate(csv_r): # 0 - 6 文件夹分别label为: # angry ,disgust ,fear ,happy ,sad ,surprise ,neutral pixel = np.asarray([float(p) for p in pixel.split()]).reshape(48, 48) sub_folder = os.path.join(save_path, label) if not os.path.exists(sub_folder): os.makedirs(sub_folder) im = Image.fromarray(pixel).convert(‘L‘) image_name = os.path.join(sub_folder, ‘{:05d}.jpg‘.format(i)) print(image_name) im.save(image_name)
第二部:训练网络,得到分类器模型。
定义Model共20层:深度卷积神经网络的构建和训练。
卷积层conv2D +激活层activation-relu +conv2D + activation-relu +池化层MaxPooling2D +
conv2D + activation-relu + MaxPooling2D +
conv2D + activation-relu + MaxPooling2D +
扁平Flaten + 全连接层Dense + activation-relu +
丢失部分特征Dropout + Dense + activation-relu +
Dropout + Dense + activation-relu
保存网络.json和 模型.h5
流程:
train.py
from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator from keras.optimizers import SGD batch_siz = 128 num_classes = 7 nb_epoch = 100 img_size = 48 data_path = ‘./data‘ model_path = ‘./model‘ class Model: def __init__(self): self.model = None def build_model(self): self.model = Sequential() self.model.add(Conv2D(32, (1, 1), strides=1, padding=‘same‘, input_shape=(img_size, img_size, 1))) self.model.add(Activation(‘relu‘)) self.model.add(Conv2D(32, (5, 5), padding=‘same‘)) self.model.add(Activation(‘relu‘)) self.model.add(MaxPooling2D(pool_size=(2, 2))) #池化,每个块只留下max self.model.add(Conv2D(32, (3, 3), padding=‘same‘)) self.model.add(Activation(‘relu‘)) self.model.add(MaxPooling2D(pool_size=(2, 2))) self.model.add(Conv2D(64, (5, 5), padding=‘same‘)) self.model.add(Activation(‘relu‘)) self.model.add(MaxPooling2D(pool_size=(2, 2))) self.model.add(Flatten()) # 扁平,折叠成一维的数组 self.model.add(Dense(2048)) # 全连接神经网络层 self.model.add(Activation(‘relu‘)) self.model.add(Dropout(0.5)) # 忽略一半的特征检测器 self.model.add(Dense(1024)) self.model.add(Activation(‘relu‘)) self.model.add(Dropout(0.5)) self.model.add(Dense(num_classes)) self.model.add(Activation(‘softmax‘)) self.model.summary() # 参数输出 def train_model(self): sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) #随机梯度下降的方向训练权重 self.model.compile(loss=‘categorical_crossentropy‘, optimizer=sgd, metrics=[‘accuracy‘]) # 自动扩充训练样本 train_datagen = ImageDataGenerator( rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) # 归一化验证集 val_datagen = ImageDataGenerator( rescale=1. / 255) eval_datagen = ImageDataGenerator( rescale=1. / 255) # 以文件分类名划分label train_generator = train_datagen.flow_from_directory( data_path + ‘/train‘, target_size=(img_size, img_size), color_mode=‘grayscale‘, batch_size=batch_siz, class_mode=‘categorical‘) val_generator = val_datagen.flow_from_directory( data_path + ‘/val‘, target_size=(img_size, img_size), color_mode=‘grayscale‘, batch_size=batch_siz, class_mode=‘categorical‘) eval_generator = eval_datagen.flow_from_directory( data_path + ‘/test‘, target_size=(img_size, img_size), color_mode=‘grayscale‘, batch_size=batch_siz, class_mode=‘categorical‘) # early_stopping = EarlyStopping(monitor=‘loss‘, patience=3) history_fit = self.model.fit_generator( train_generator, steps_per_epoch=800 / (batch_siz / 32), # 28709 nb_epoch=nb_epoch, validation_data=val_generator, validation_steps=2000, # callbacks=[early_stopping] ) # history_eval=self.model.evaluate_generator( # eval_generator, # steps=2000) history_predict = self.model.predict_generator( eval_generator, steps=2000) with open(model_path + ‘/model_fit_log‘, ‘w‘) as f: f.write(str(history_fit.history)) with open(model_path + ‘/model_predict_log‘, ‘w‘) as f: f.write(str(history_predict)) # 保存训练的模型文件 def save_model(self): model_json = self.model.to_json() with open(model_path + "/model_json.json", "w") as json_file: json_file.write(model_json) self.model.save_weights(model_path + ‘/model_weight.h5‘) self.model.save(model_path + ‘/model.h5‘) if __name__ == ‘__main__‘: model = Model() model.build_model() print(‘model built‘) model.train_model() print(‘model trained‘) model.save_model() print(‘model saved‘)
第三步:使用模型,预测表情。
predictFER.py
#!/usr/bin/python # -*- coding = utf-8 -*- #author:thy #date:20191230 #version:1.0 import cv2 import numpy as np from keras.models import model_from_json model_path = ‘./model/‘ img_size = 48 emotion_labels = [‘angry‘, ‘disgust‘, ‘fear‘, ‘happy‘, ‘sad‘, ‘surprise‘, ‘neutral‘] num_class = len(emotion_labels) # 从json中加载模型 json_file = open(model_path + ‘model_json.json‘) loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) # 加载模型权重 model.load_weights(model_path + ‘model_weight.h5‘) # 创建VideoCapture对象 capture = cv2.VideoCapture(0) # 使用opencv的人脸分类器 cascade = cv2.CascadeClassifier(model_path + ‘haarcascade_frontalface_alt.xml‘) while True: ret, frame = capture.read() # 灰度化处理 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 呈现用emoji替代后的画面 emoji_show = frame.copy() # 识别人脸位置 faceLands = cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=1, minSize=(120, 120)) if len(faceLands) > 0: for faceLand in faceLands: x, y, w, h = faceLand images = [] result = np.array([0.0] * num_class) # 裁剪出脸部图像 image = cv2.resize(gray[y:y + h, x:x + w], (img_size, img_size)) image = image / 255.0 image = image.reshape(1, img_size, img_size, 1) # 调用模型预测情绪 predict_lists = model.predict_proba(image, batch_size=32, verbose=1) # print(predict_lists) result += np.array([predict for predict_list in predict_lists for predict in predict_list]) # print(result) emotion = emotion_labels[int(np.argmax(result))] print("Emotion:", emotion) # 框出脸部并且写上标签 cv2.rectangle(frame, (x - 20, y - 20), (x + w + 20, y + h + 20), (0, 255, 255), thickness=10) cv2.putText(frame, ‘%s‘ % emotion, (x, y - 50), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 255, 255), 2, 30) cv2.imshow(‘Face‘, frame) if cv2.waitKey(60) == ord(‘q‘): break # 释放摄像头并销毁所有窗口 capture.release() cv2.destroyAllWindows()
结论:
实现摄像头检测到的人脸的表情标记。
标签:models mode min lis 神经网络 uil 图片 public mil
原文地址:https://www.cnblogs.com/philothypeipei/p/12122149.html