标签:hdu
http://acm.hdu.edu.cn/showproblem.php?pid=3685
2 4 0 0 100 0 99 1 1 1 6 0 0 0 10 1 10 1 1 10 1 10 0
2 3HintThe sample test cases can be demonstrated by Figure 1 and Figure 2 in Description part.
题意:给一个多边形,问有几种稳定的摆放方式。。
思路:很简单。。。求出多边形的重心,然后由于不一定是凸多边形,所以再求下多边形凸包,枚举凸包的每一条边,看重心做垂足是否在边上,注意题目要求垂足在端点不算。。可以用点积看夹角是不是锐角来判断垂足位置。。
/** * @author neko01 */ //#pragma comment(linker, "/STACK:102400000,102400000") #include <cstdio> #include <cstring> #include <string.h> #include <iostream> #include <algorithm> #include <queue> #include <vector> #include <cmath> #include <set> #include <map> using namespace std; typedef long long LL; #define min3(a,b,c) min(a,min(b,c)) #define max3(a,b,c) max(a,max(b,c)) #define pb push_back #define mp(a,b) make_pair(a,b) #define clr(a) memset(a,0,sizeof a) #define clr1(a) memset(a,-1,sizeof a) #define dbg(a) printf("%d\n",a) typedef pair<int,int> pp; const double eps=1e-8; const double pi=acos(-1.0); const int INF=0x7fffffff; const LL inf=(((LL)1)<<61)+5; int dcmp(double x) { if(fabs(x)<eps) return 0; if(x>0) return 1; return -1; } struct point{ double x,y; point(double x=0,double y=0):x(x),y(y) {} }; point operator +(const point &a,const point &b){ return point(a.x+b.x,a.y+b.y); } point operator -(const point &a,const point &b){ return point(a.x-b.x,a.y-b.y); } point operator *(const point &a,const double &p){ return point(a.x*p,a.y*p); } point operator /(const point &a,const double &p){ return point(a.x/p,a.y/p); } bool operator < (const point &a,const point &b){ return a.x<b.x||(a.x==b.x&&a.y<b.y); } bool operator == (const point &a,const point &b){ return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } double dot(point A,point B){ return A.x*B.x+A.y*B.y; } double cross(point A,point B){ return A.x*B.y-A.y*B.x; } double Length(point A){ return sqrt(dot(A,A)); } bool OnSegment(point p,point a1,point a2) //判断点p是否在直线a1a2上 { return dcmp(cross(a1-p,a2-p))==0&&dcmp(dot(a1-p,a2-p))<0; //线段包含端点时改成<= } point PolyGravity(point *p,int n) //求多边形重心 { point ans=point(0,0); double sumArea=0,area; for(int i=2;i<n;i++) { area=cross(p[i-1]-p[0],p[i]-p[0]); sumArea+=area; ans.x+=(p[0].x+p[i-1].x+p[i].x)*area; ans.y+=(p[0].y+p[i-1].y+p[i].y)*area; } return ans/(sumArea*3); } int graham(point *p,int n,point *ch) //凸包 { sort(p,p+n); int m=0; for(int i=0;i<n;i++) { while(m>1&&cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--; ch[m++]=p[i]; } int k=m; for(int i=n-2;i>=0;i--) { while(m>k&&cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--; ch[m++]=p[i]; } if(n>1) m--; return m; } point p[50005]; point ch[50005]; bool check(point P,point A,point B) { point v1=B-A,v2=P-A,v3=P-B; if(dcmp(dot(v1,v2))<=0) return false; if(dcmp(dot(v1,v3))>=0) return false; return true; } int main() { int n,t; scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); point g=PolyGravity(p,n); int m=graham(p,n,ch),ans=0; ch[m]=ch[0]; for(int i=0;i<m;i++) { if(OnSegment(g,ch[i],ch[i+1])||check(g,ch[i],ch[i+1])) ans++; } printf("%d\n",ans); } return 0; }
hdu3685 Rotational Painting 求多边形重心和凸包
标签:hdu
原文地址:http://blog.csdn.net/neko01/article/details/40678545