标签:模板 main ++i 圆心 cpp return 模板题 图片 整数
输入 #1
5
1.200 1.200
2.400 2.400
3.800 4.500
2.500 3.100
3.900 1.300
输出 #1
2.50 2.85 2.10
队员是否在边界上的判断应该符合他到圆心的距离与信号塔接受半径的差的绝对值小于10^-6,最终结果保留2位整数。
30%:1<=N<=10000
70%:1<=N<=20000
100%:1<=N<=1e6
最小圆覆盖的模板题。。。看似\(O(n^3)\) 其实是\(O(n)\) 。。。。。。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e6+100;
const double eps = 1e-6;
int n;
struct point{double x , y; } a[N] , o;
double r;
inline double dis(point A ,point B) { return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)) ;}
int from[4];
int dcmp(double X) { return fabs(X) < eps ? 0 : (X < eps ? -1 : 1) ; }
bool include(point A) { return dcmp(dis(A , o) - r) <= 0; }
void build(point A , point B , point C)
{
double
a = B.x - A.x , b = B.x + A.x ,
c = B.y - A.y , d = B.y + A.y ,
ap = C.x - A.x , bp = C.x + A.x ,
cp = C.y - A.y , dp = C.y + A.y ;
o.x = (ap * bp * c - cp * a * b + cp * dp * c - cp * c * d) / (ap * c - cp * a) / 2.0;
o.y = (a * b - 2 * o.x * a + c * d) / c / 2.0;
r = dis(o , A); return ;
}
int main()
{
scanf("%d",&n);
for(int i = 1 ; i <= n ; ++i) scanf("%lf%lf" , &a[i].x , &a[i].y);
random_shuffle(a + 1 , a + 1 + n);
o = a[1]; r = 0;
for(int i = 2 ; i <= n ; ++i)
{
if(include(a[i])) continue;
o = a[i]; r = 0;
for(int j = 1 ; j < i ; ++j)
{
if(include(a[j])) continue;
o.x = (a[i].x + a[j].x) * 0.5;
o.y = (a[i].y + a[j].y) * 0.5;
r = dis(o , a[j]);
for(int k = 1 ; k < j ; ++k)
{
if(include(a[k])) continue;
build(a[i] , a[j] , a[k]);
}
}
}
printf("%.2f %.2f %.2f" , o.x , o.y , r);
return 0;
}
标签:模板 main ++i 圆心 cpp return 模板题 图片 整数
原文地址:https://www.cnblogs.com/R-Q-R-Q/p/12147887.html