码迷,mamicode.com
首页 > 其他好文 > 详细

miRNA分析--比对(二)

时间:2020-01-04 22:23:00      阅读:685      评论:0      收藏:0      [点我收藏+]

标签:命名   ade   nes   bsp   nim   directory   lib   get   blog   

 miRNA分析--数据过滤(一)

 

在比对之前为了减少比对时间,将每一个样本中的reads进行合并,得到fasta格式,其命名规则如下:

样本_r数子_x数字

r 中的数字表示reads序号;

x 中的数字表示该条reads重复次数

 

比对分为两条策略

1、根据本物种已有的miRNA序列进行比对,

已知当miRNA序列从 miRBase 或者 sRNAanno得到

 

(应该将clean reads比对到所研究物种到tRNA, rRNA, snoRNA,mRNA等数据,允许一个错配,将比对上等reads过滤,也可以比对到参考基因组,将为未比对到到reads过滤掉,但是本次我没有这么做)

对于第一种情况,我采用bowtie将reads比对到成熟miRNA

1 ##建立索引
2 bowtie-build ref.fa
3 ##比对
4 bowtie -v 0 -m 30 -p 10 -f  ref.fa sample.fa sample.bwt
5 参数解释
6 -v: 允许0个错配
7 -p: 10个线程 
8 -m: 当比对超过这个数时,认为时未比对
9 -f: 输入序列fasta

根据.bwt 文件可以计算出每个已知当miRNA中比对上当reads数量,别忘记乘以 x后面的数

2、直接比对到参考基因组并进行新miRNA鉴定

采用miR-PREFeR进行Novel miRNA鉴定

其githup主页:https://github.com/hangelwen/miR-PREFeR

  • 需安装ViennaRNA ( 最好是1.8.5或2.1.2, 2.1.5版本)

1 #我装的是最新版
2 wget https://www.tbi.univie.ac.at/RNA/download/sourcecode/2_4_x/ViennaRNA-2.4.10.tar.gz 
3 tar zvxf ViennaRNA-2.4.10.tar.gz
4 cd ViennaRNA-2.4.10
5 ./configure --prefix="/user/tools/ViennaRNA/" --without-perl
6 make
7 make install
  • 安装

 1 git clone https://github.com/hangelwen/miR-PREFeR.git 

  • 数据准备

1??ref.fa

2??miRNA 比对到ref.fa的sam文件

3??gff 文件(可选,记录需要屏蔽掉的信息,比如重复序列等)

bowtie 比对

 1 bowtie -v 0 -m 30 -p 10 -f ref.fa sample.fa -S sample.sam 

准备configure 文件

 1 #example configuration file for the miR-PREFeR pipeline.
 2 #lines start with # are comments
 3 
 4 #miR-PREFeR path, please change to your path to the script folder. 
 5 #Absolute path perfered.
 6 PIPELINE_PATH = /miR
 7 
 8 #Genomic sequence file in fasta format.  Absolute path perfered. If a path
 9 #relative if used, its relatvie to the working directory where you execute
10 #the pipeline.
11 FASTA_FILE =  genome_v1.fa
12 
13 #Small RNA read alignment file in SAM format. The SAM file should contain 
14 #the SAM header. If N samples are used, then N file names are listed here, 
15 #separated by comma. please note that before doing alignment, process the 
16 #reads fasta files using the provided script process-reads-fasta.py to
17 #collapse and rename the reads. Absolute path perfered. If a path
18 #relative if used, its relatvie to the working directory where you execute
19 #the pipeline.
20 ALIGNMENT_FILE = ./trm_XX-1_L1_I309.R1.fastq_trm_fa.fa.sam, ./trm_XX-2_L1_I310.R1.fastq_trm_fa.fa.sam, ./trm_XX-3_L1_I311.R1.fastq_trm_fa.fa.sam, ./trm_XY-1_L1_I312.R1.fastq_trm_fa.fa.sam, ./trm_XY-2_L1_I313.R1.fastq_trm_fa.fa.sam, ./trm_XY-3_L1_I314.R1.fastq_trm_fa.fa.sam, ./trm_YY-1_L1_I315.R1.fastq_trm_fa.fa.sam, ./trm_YY-2_L1_I316.R1.fastq_trm_fa.fa.sam, ./trm_YY-3_L1_I332.R1.fastq_trm_fa.fa.sam
21 
22 #GFF file which list all existing annotations on genomic sequences FASTA_FILE.
23 #If no GFF file is availble, comment this line out or leave the value blank.
24 #Absolute path perfered. If a path relative if used, its relatvie to the
25 #working directory where you execute the pipeline.
26 #CAUTION: please only list the CDS regions, not the entire miRNA region, because 
27 #miRNAs could be in introns. This option is mutual exclusive with GFF_FILE_INCLUDE
28 #option.
29 # If you have a GFF file that contains regions in which you want to predict whehter 
30 # they include miRNAs, please use the GFF_FILE_INCLUDE option instead.
31 GFF_FILE_EXCLUDE = CDS.gff
32 
33 # Only predict miRNAs from the regions given in the GFF file. This option is mutual 
34 # exclusive with GFF_FILE_EXCLUDE. Thus, only one of them can be used.
35 #GFF_FILE_INCLUDE = ./TAIR10.chr1.candidate.gff
36 
37 #The max length of a miRNA precursor. The range is from 60 to 3000. The default
38 #is 300. 
39 PRECURSOR_LEN = 300
40 
41 #The first step of the pipeline is to identify candidate regions of the miRNA
42 #loci. If READS_DEPTH_CUTOFF = N, then bases that the mapped depth is smaller
43 #than N is not considered. The value should >=2.
44 READS_DEPTH_CUTOFF = 20
45 
46 #Number of processes for this computation. Using more processes speeds up the computation,
47 #especially if you have a multi-core processor. If you have N cores avalible for the 
48 #computation, its better to set this value in the range of N to 2*N.
49 #If comment out or leave blank, 1 is used. 
50 NUM_OF_CORE = 4
51 
52 #Outputfolder. If not specified, use the current working directory. Please make sure that 
53 #you have enough disk space for the folder, otherwise the pipeline may fail.
54 OUTFOLDER = spinach-result
55 
56 #Absolute path of the folder that contains intermidate/temperary files during the
57 # run of the pipeline. If not specified, miR-PREFeR uses a folder with suffix "_tmp"
58 #under OUTFOLDER by default. Please make sure that you have enough disk space for the
59 # folder, otherwise the pipeline may fail.
60 #TMPFOLDER = /tmp/exmaple
61 TMPFOLDER = 
62 
63 #prefix for naming the output files. For portability, please DO NOT contain any 
64 #spaces and special characters. The prefered includes A-Z, a-z, 0-9, and 
65 #underscore _.
66 NAME_PREFIX = spinach-example
67 
68 #Maximum gap length between two contigs to form a candidate region. 
69 MAX_GAP = 100
70 
71 # Minimum and maximum length of the mature sequence. Default values are 18 and 24.
72 MIN_MATURE_LEN = 18
73 MAX_MATURE_LEN = 24
74 
75 # If this is Y, then the criteria that requries the star sequence must be expressed 
76 # is loosed if the expression pattern is good enough (.e.g. the majority of the reads 
77 # mapped to the region are mapped to the mature position.). There are lots of miRNAs 
78 # which do not have star sequence expression. The default value is Y.
79 ALLOW_NO_STAR_EXPRESSION = Y
80 
81 # In most cases, the mature star duplex has 2nt 3 overhangs. If this is set to Y, then
82 # 3nt overhangs are allowed. Default is N.
83 ALLOW_3NT_OVERHANG = N
84 
85 #The pipeline makes a checkpoint after each major step. In addition, because the
86 #folding stage is the most time consuming stage, it makes a checkpiont for each
87 #folding process after folding every CHECKPOINT_SIZE sequences. If the pipeline
88 #is killed for some reason in the middle of folding, it can be restarted using
89 #recover command from where it was stopped. The default value is 3000. On my
90 #system this means making a checkpoint about every 5 minutes.
91 CHECKPOINT_SIZE = 3000

运行

 1 python miR_PREFeR.py -L -k pipeline configfile 

pipeline里包含prepare, candidate, fold, predict四步。如果某步中断了,还可以续跑

 1 python miR_PREFeR.py -L recover configfile 

 

输出结果

根据example_miRNA.detail.csv 文件 写一个脚本 提取每个miRNA的reads 数量,进而做差异分析

 

差异分析

差异分析采用DESeq2, 可看我之前写的miRAN 分析以及mRNA分析

 

 

 

ref

1、计算已知miRNA当表达量

2、省心省事的植物miRNA分析软件miR-PREFeR,值得拥有

miRNA分析--比对(二)

标签:命名   ade   nes   bsp   nim   directory   lib   get   blog   

原文地址:https://www.cnblogs.com/zhanmaomao/p/12150502.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!