标签:报错 打开 处理 tab sso yarn 方式 bho pos
#查看命令
rpm -qa | grep java
#删除命令
rpm -e --nodeps xxx
将oracle-j2sdk1.8-1.8.0+update181-1.x86_64.rpm上传至每个节点安装
rpm -ivh oracle-j2sdk1.8-1.8.0+update181-1.x86_64.rpm
修改配置文件
vim /etc/profile
#添加
export JAVA_HOME=/usr/java/jdk1.8.0_181-cloudera
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
刷新源
source /etc/profile
检验
java
javac
# 创建部署用户
userdel -r dolphinscheduler
useradd dolphinscheduler && echo dolphinscheduler | passwd --stdin dolphinscheduler
# 赋予 sudo 权限
chmod 640 /etc/sudoers
vim /etc/sudoers
# 大概在100行,在root下添加如下(注意更改smapp)
dolphinscheduler ALL=(ALL) NOPASSWD: NOPASSWD: ALL
# 并且需要注释掉 Default requiretty 一行。如果有则注释,没有没有跳过
#Default requiretty
所有节点
su dolphinscheduler
#生成密钥对(公钥和私钥)三次回车生成密钥
ssh-keygen -t rsa
#查看公钥
cat ~/.ssh/id_rsa.pub
#将密匙输出到/root/.ssh/authorized_keys
cat ~/.ssh/id_rsa.pub > ~/.ssh/authorized_keys
chmod 600 ~/.ssh/authorized_keys
主节点
#追加密钥到主节点(需要操作及密码验证,追加完后查看一下该文件)--在主节点上操作,拷取从节点密匙
ssh 从节点机器IP cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
cat ~/.ssh/authorized_keys
#从主节点复制密钥到从节点
scp ~/.ssh/authorized_keys dolphinscheduler@从节点机器IP:~/.ssh/authorized_keys
所有节点互相进行ssh连接
ssh dolphinscheduler@172.xx.xx.xxx
ssh dolphinscheduler@172.xx.xx.xxx
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
sudo python get-pip.py
pip --version
pip install kazoo
#使用python import kazoo,不报错即可
# git 下载地址
https://github.com/apache/incubator-dolphinscheduler/releases
# 创建安装目录
sudo mkdir /opt/DolphinScheduler && sudo chown -R dolphinscheduler:dolphinscheduler /opt/DolphinScheduler
#切换用户上传tar包
su dolphinscheduler
cd /opt/DolphinScheduler && mkdir dolphinScheduler-backend
tar -zxvf apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin.tar.gz -C dolphinScheduler-backend
cd /opt/DolphinScheduler && mkdir dolphinScheduler-ui
tar -zxvf apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-front-bin.tar.gz -C dolphinScheduler-ui
# 设置数据用户 dolphinscheduler 的访问密码为 dolphinscheduler,并且不对访问的 ip 做限制
# 测试环境将访问设置为所有,如果是生产,可以限制只能子网段的ip才能访问('192.168.1.%')
CREATE DATABASE dolphinscheduler DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON dolphinscheduler.* TO '{user}'@'%' IDENTIFIED BY '{password}';
GRANT ALL PRIVILEGES ON dolphinscheduler.* TO '{user}'@'localhost' IDENTIFIED BY '{password}';
flush privileges;
vim /opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/conf/application-dao.properties
#注意注释postgre连接,打开mysql连接
>>>>
spring.datasource.url=jdbc:mysql://10.xx.xx.xx:3306/dolphinscheduler?useUnicode=true&characterEncoding=UTF-8
spring.datasource.username=dolphinscheduler
spring.datasource.password=dolphinscheduler
#执行创建表和导入基础数据脚本(1.2缺少mysql连接jar,先copy一个mysql-connector-java-5.1.34.jar到lib下)
cd /opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin
sh script/create-dolphinscheduler.sh
vim /opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/conf/env/.dolphinscheduler_env.sh
>>>>
export HADOOP_HOME=/opt/cloudera/parcels/CDH/lib/hadoop
export HADOOP_CONF_DIR=/etc/hadoop/conf
export SPARK_HOME1=/opt/cloudera/parcels/CDH/lib/spark
#export SPARK_HOME2=/opt/soft/spark2
export PYTHON_HOME=/usr/bin/python
export JAVA_HOME=/usr/java/jdk1.8.0_181-cloudera
export HIVE_HOME=/opt/cloudera/parcels/CDH/lib/hive
#export FLINK_HOME=/opt/soft/flink
#export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH
export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$PYTHON_HOME:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH
export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH
vim /opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/install.sh
>>>>
# 1. mysql 配置
# 安装完成后以下几项配置位于 $installPath/conf/quartz.properties 中
# mysql 地址,端口;数据库名称;用户名;密码(注意:如果有特殊字符,请用 \ 转移符进行转移)
# for example postgresql or mysql ...
#dbtype="postgresql"
dbtype="mysql"
# db config
# db address and port
dbhost="10.xx.xx.xx:3306"
# db name
dbname="dolphinscheduler"
# db username
username="dolphinscheduler"
# db passwprd
# Note: if there are special characters, please use the \ transfer character to transfer
passowrd="dolphinscheduler"
# 2. 集群架构配置
# 2.1 集群部署环境配置
# 安装完成后以下几项配置位于 $installPath/conf/config/install_config.conf 中
# conf/config/install_config.conf config
# Note: the installation path is not the same as the current path (pwd)
# dolphinscheduler 集群安装目录(不能与先有路径相同)
installPath="/opt/DolphinScheduler/dolphinscheduler"
# deployment user
# Note: the deployment user needs to have sudo privileges and permissions to operate hdfs. If hdfs is enabled, the root directory needs to be created by itself
# 部署用户。注意:部署用户需要有 sudo 权限及操作 hdfs 的权限,如果开启 hdfs,根目录需要自行创建
deployUser="dolphinscheduler"
# zk cluster
# zk 集群
zkQuorum="172.xx.xx.xx:2181,172.xx.xx.xx:2181,172.xx.xx.xx:2181"
# install hosts
# Note: install the scheduled hostname list. If it is pseudo-distributed, just write a pseudo-distributed hostname
# 安装 DolphinScheduler 的机器 hostname 列表,如果是一台ips="xx.xx.xx.xx"
ips="xx.xx.xx.232,xx.xx.xx.233"
# 2.2 各节点服务配置(必须是hostname,如果是单台就只写一个)
# 安装完成后以下几项配置位于 $installPath/conf/config/run_config.conf 中
# conf/config/run_config.conf config
# run master machine
# Note: list of hosts hostname for deploying master
# 运行 Master 的机器
masters="ds1.com,ds2.com"
# run worker machine
# note: list of machine hostnames for deploying workers
# 运行 Worker 的机器
workers="ds1.com,ds2.com"
# run alert machine
# note: list of machine hostnames for deploying alert server
# 运行 Alert 的机器(提供告警相关接口)
alertServer="ds1.com,ds2.com"
# run api machine
# note: list of machine hostnames for deploying api server
# 运行 Api 的机器(API 接口层,主要负责处理前端UI层的请求)
apiServers="ds1.com,ds2.com"
# 3. alert 配置
# 安装完成后以下几项配置位于 $installPath/conf/alert.properties 中
# alert config
# mail protocol
# 邮件协议
mailProtocol="SMTP"
# mail server host
# 邮件服务host
mailServerHost="smtp.qq.com"
# mail server port
# 邮件服务端口
mailServerPort="587"
# sender
# 发送人
mailSender="xxx@qq.com"
# user
mailUser="xxx@qq.com"
# sender password
# 发送人密码(如果线下使用25端口则是邮箱密码,否则是开启SMTP服务的验证码)
mailPassword="xxxxx"
# TLS mail protocol support
starttlsEnable="true"
#认证
sslTrust="smtp.qq.com"
# SSL mail protocol support
# note: The SSL protocol is enabled by default.
# only one of TLS and SSL can be in the true state.
# SSL邮件协议支持
# 注意:默认开启的是SSL协议,TLS和SSL只能有一个处于true状态
sslEnable="false"
# 下载Excel路径
xlsFilePath="/opt/DolphinScheduler/xls"
# 企业微信企业ID配置
enterpriseWechatCorpId="xxxxxxxxxx"
# 企业微信应用Secret配置
enterpriseWechatSecret="xxxxxxxxxx"
# 企业微信应用AgentId配置
enterpriseWechatAgentId="xxxxxxxxxx"
# 企业微信用户配置,多个用户以,分割
enterpriseWechatUsers="xxxxx,xxxxx"
# 4. 开启监控自启动脚本
# 控制是否启动自启动脚本(监控master,worker状态,如果掉线会自动启动)
#monitorServerState="false"
monitorServerState="true"
# 5. 资源中心配置
# 安装完成后以下几项配置位于 $installPath/conf/common/* 中
# 5.1 Hadoop 相关配置
# resource Center upload and select storage method:HDFS,S3,NONE
# 资源中心上传选择存储方式:HDFS,S3,NONE
resUploadStartupType="HDFS"
# if resUploadStartupType is HDFS,defaultFS write namenode address,HA you need to put core-site.xml and hdfs-site.xml in the conf directory.
# if S3,write S3 address,HA,for example :s3a://dolphinscheduler,
# Note,s3 be sure to create the root directory /dolphinscheduler
# 如果存储方式为HDFS,defaultFS 写 namenode 地址;支持 HA,需要将 core-site.xml 和 hdfs-site.xml 放到 conf 目录下
defaultFS="hdfs://xx.xx.xx.xx:8020"
# if S3 is configured, the following configuration is required.
# 如果配置了S3,则需要有以下配置
#s3Endpoint="http://192.168.199.91:9010"
#s3AccessKey="A3DXS30FO22544RE"
#s3SecretKey="OloCLq3n+8+sdPHUhJ21XrSxTC+JK"
# 5.2 yarn 相关配置
# resourcemanager HA配置,如果是单 resourcemanager, 这里为 yarnHaIps="",填写下面
#yarnHaIps=""
yarnHaIps="xx.xx.xx.xx,xx.xx.xx.xx"
# 如果是单 resourcemanager, 只需要配置一个主机名称,如果是 resourcemanager HA,则默认配置就好
#singleYarnIp="xx.xx.xx.xx"
# 5.3 HDFS 根目录及权限配置
# hdfs root path, the owner of the root path must be the deployment user.
# versions prior to 1.1.0 do not automatically create the hdfs root directory, you need to create it yourself.
# hdfs 根路径,根路径的 owner 必须是部署用户。1.1.0之前版本不会自动创建hdfs根目录,需要自行创建
hdfsPath="/dolphinscheduler"
# have users who create directory permissions under hdfs root path /
# Note: if kerberos is enabled, hdfsRootUser="" can be used directly.
# 拥有在hdfs根路径下创建目录权限的用户(此处不建议配置为超级管理员用户,根目录需自行创建并修改权限)
# 注意:如果开启了kerberos,则直接hdfsRootUser="",就可以
hdfsRootUser="dolphinscheduler"
# 6. common 配置(默认配置)
# 安装完成后以下几项配置位于 $installPath/conf/common/common.properties 中
# 程序路径
programPath="/tmp/dolphinscheduler"
#下载路径
downloadPath="/tmp/dolphinscheduler/download"
# 任务执行路径
execPath="/tmp/dolphinscheduler/exec"
# SHELL环境变量路径
shellEnvPath="$installPath/conf/env/.dolphinscheduler_env.sh"
# 资源文件的后缀
resSuffixs="txt,log,sh,conf,cfg,py,java,sql,hql,xml"
# 开发状态,如果是true,对于SHELL脚本可以在execPath目录下查看封装后的SHELL脚本,如果是false则执行完成直接删除
devState="true"
# kerberos 配置
# kerberos 是否启动
kerberosStartUp="false"
# kdc krb5 配置文件路径
krb5ConfPath="$installPath/conf/krb5.conf"
# keytab 用户名
keytabUserName="hdfs-mycluster@ESZ.COM"
# 用户 keytab路径
keytabPath="$installPath/conf/hdfs.headless.keytab"
# 7. zk 配置(默认配置)
# 安装完成后以下几项配置位于 $installPath/conf/zookeeper.properties 中
# zk根目录
zkRoot="/dolphinscheduler"
# 用来记录挂掉机器的zk目录
zkDeadServers="$zkRoot/dead-servers"
# masters目录
zkMasters="$zkRoot/masters"
# workers目录
zkWorkers="$zkRoot/workers"
# zk master分布式锁
mastersLock="$zkRoot/lock/masters"
# zk worker分布式锁
workersLock="$zkRoot/lock/workers"
# zk master容错分布式锁
mastersFailover="$zkRoot/lock/failover/masters"
# zk worker容错分布式锁
workersFailover="$zkRoot/lock/failover/workers"
# zk master启动容错分布式锁
mastersStartupFailover="$zkRoot/lock/failover/startup-masters"
# zk session 超时
zkSessionTimeout="300"
# zk 连接超时
zkConnectionTimeout="300"
# zk 重试间隔
zkRetrySleep="100"
# zk重试最大次数
zkRetryMaxtime="5"
# 8. master 配置(默认配置)
# 安装完成后以下几项配置位于 $installPath/conf/master.properties 中
# master执行线程最大数,流程实例的最大并行度
masterExecThreads="100"
# master任务执行线程最大数,每一个流程实例的最大并行度
masterExecTaskNum="20"
# master心跳间隔
masterHeartbeatInterval="10"
# master任务提交重试次数
masterTaskCommitRetryTimes="5"
# master任务提交重试时间间隔
masterTaskCommitInterval="100"
# master最大cpu平均负载,用来判断master是否还有执行能力
masterMaxCpuLoadAvg="10"
# master预留内存,用来判断master是否还有执行能力
masterReservedMemory="1"
# 9. worker 配置
# 安装完成后以下几项配置位于 $installPath/conf/worker.properties 中
# worker执行线程
workerExecThreads="100"
# worker心跳间隔
workerHeartbeatInterval="10"
# worker一次抓取任务数
workerFetchTaskNum="3"
# worker最大cpu平均负载,用来判断worker是否还有执行能力,保持系统默认,默认为cpu核数的2倍,当负载达到2倍时,
#workerMaxCupLoadAvg="10"
# worker预留内存,用来判断master是否还有执行能力
workerReservedMemory="1"
# 10. api 配置(默认配置)
# 安装完成后以下几项配置位于 $installPath/conf/application.properties 中
# api 服务端口
apiServerPort="12345"
# api session 超时
apiServerSessionTimeout="7200"
# api 上下文路径
apiServerContextPath="/dolphinscheduler/"
# spring 最大文件大小
springMaxFileSize="1024MB"
# spring 最大请求文件大小
springMaxRequestSize="1024MB"
# api 最大post请求大小
apiMaxHttpPostSize="5000000"
# 若 install.sh 中,resUploadStartupType 为 HDFS,且配置为 HA,则需拷贝 hadoop 配置文件到 conf 目录下
#cp /etc/hadoop/conf.cloudera.yarn/hdfs-site.xml /opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/conf/
#cp /etc/hadoop/conf.cloudera.yarn/core-site.xml /opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/conf/
scp /etc/hadoop/conf.cloudera.yarn/hdfs-site.xml smapp@xx.xx.xx.232:/opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/conf/
scp /etc/hadoop/conf.cloudera.yarn/core-site.xml smapp@xx.xx.xx.232:/opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/conf/
#sudo -u hdfs hadoop fs -rmr /dolphinscheduler
sudo -u hdfs hadoop fs -mkdir /dolphinscheduler
sudo -u hdfs hadoop fs -chown dolphinscheduler:dolphinscheduler /dolphinscheduler
#在日志中可能看到找不到java,修改其$JAVA_HOME
vim /opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/bin/dolphinscheduler-daemon.sh
#进入脚本目录启动
cd /opt/DolphinScheduler/dolphinScheduler-backend/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-backend-bin/
sh install.sh
vim /etc/nginx/conf.d/default.conf
》》》
upstream dolphinsch {
server xx.xx.xx.232:12345;
server xx.xx.xx.233:12345;
}
server {
listen 80;# 访问端口
server_name localhost;
#charset koi8-r;
#access_log /var/log/nginx/host.access.log main;
location / {
root /opt/DolphinScheduler/dolphinScheduler-ui/apache-dolphinscheduler-incubating-1.2.0-dolphinscheduler-front-bin/dist; # 静态文件目录,即前端解压的 dist 目录
index index.html index.html;
}
location /dolphinscheduler {
proxy_pass http://dolphinsch; # 接口地址(自行修改)
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header x_real_ipP $remote_addr;
proxy_set_header remote_addr $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_http_version 1.1;
proxy_connect_timeout 4s;
proxy_read_timeout 30s;
proxy_send_timeout 12s;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
}
#error_page 404 /404.html;
# redirect server error pages to the static page /50x.html
#
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root /usr/share/nginx/html;
}
}
#修改上传文件大小限制
sudo vim /etc/nginx/nginx.conf
# 在 http 内加入
>>>
client_max_body_size 1024m;
#重启 nginx 服务
systemctl restart nginx
admin
dophinscheduler123
大数据篇:DolphinScheduler-1.2.0.release安装部署
标签:报错 打开 处理 tab sso yarn 方式 bho pos
原文地址:https://www.cnblogs.com/ttzzyy/p/12150697.html