标签:word 字母 case class border triangle 矛盾 val 定义
对于字符串 \(S\),若 \(S\) 的最小后缀为其本身,那么称 \(S\) 为 \(\text{Lyndon}\) 串(\(\text{Lyndon Words}\))
即 \(S \in L\),\(\begin{cases} S是严格最小循环 \\ minsuf(s)=s \end{cases}\)。
\(Border(S)=\varnothing\)
如果 \(u,v \in L, u \prec v\Rightarrow uv \in L\)。
\(\mathcal{Proof.}\)
\(1) s=u'v,u\triangleleft u' \Rightarrow uv < u'v\)
\(2) \text{to prove uv<v}\)
? \(2.1) u \triangleleft v \Rightarrow uv<v\)
? \(2.2) u \sqsubseteq v \Rightarrow v=uv',v<v' \Leftrightarrow uv<uv' \Leftrightarrow uv<v\)
\(3) S=v',uv<v<v'\)
\(Q.E.D.\)
PS: \(\triangleleft\):严格小于,且不是前缀,必有一个字母不同,\(\sqsubseteq\):前缀
\(ex.\) 如果 \(u,v\in L,u<v \Rightarrow u^av^b\in L\)
显然。
任意字符串 \(s\) 可以分解为 \(s=s_1s_2s_3\dots s_k\),其中 \(s_i\) 是 \(\text{Lyndon}\) 串,\(s_i \ge s_{i+1}\),且这种分解方法是唯一的。
\(\mathcal{Proof.}\)
先证存在性:
初始时每段一个字符,然后不断地将相邻两段 \(s_i<s_{i+1}\) 合并。
再证唯一性:
若有两种方案,取第一次不同的位置,设 \(|s_i| > |s_i'|\),令 \(s_i=s_i's_{i+1}' \dots s_k'pre(s_{k+1}',l)\),则
\[ s_i<pre(s_{k+1}',l)\le s_{k+1}' \le s_i' < s_i,矛盾 \]
\(\text{Duval}\)
标签:word 字母 case class border triangle 矛盾 val 定义
原文地址:https://www.cnblogs.com/newbielyx/p/12157972.html