码迷,mamicode.com
首页 > 其他好文 > 详细

【一起学源码-微服务】Ribbon 源码四:进一步探究Ribbon的IRule和IPing

时间:2020-01-08 14:50:01      阅读:103      评论:0      收藏:0      [点我收藏+]

标签:ide   info   image   cte   例子   etl   整合   cli   led   

前言

前情回顾

上一讲深入的讲解了Ribbon的初始化过程及Ribbon与Eureka的整合代码,与Eureka整合的类就是DiscoveryEnableNIWSServerList,同时在DynamicServerListLoadBalancer中会调用PollingServerListUpdater 进行定时更新Eureka注册表信息到BaseLoadBalancer中,默认30s调度一次。

本讲目录

我们知道Ribbon主要是由3个组件组成的:

  1. ILoadBalancer
  2. IRule
  3. IPing

其中ILoadBalancer前面我们已经分析过了,接下来我们一起看看IRuleIPing中的具体实现。

目录如下:

  1. 负载均衡默认Server选择逻辑
  2. Ribbon实际执行http请求逻辑
  3. Ribbon中ping机制原理
  4. Ribbon中其他IRule负载算法初探

说明

原创不易,如若转载 请标明来源!

博客地址:一枝花算不算浪漫
微信公众号:壹枝花算不算浪漫

源码分析

负载均衡默认Server选择逻辑

还记得我们上一讲说过,在Ribbon初始化过程中,默认的IRuleZoneAvoidanceRule,这里我们可以通过debug看看,从RibbonLoadBalancerClient.getServer() 一路往下跟,这里直接看debug结果:

技术图片

然后我们继续跟ZoneAvoidanceRule.choose() 方法:

public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule {
   
    /**
     * Method that provides an instance of {@link AbstractServerPredicate} to be used by this class.
     * 
     */
    public abstract AbstractServerPredicate getPredicate();
        
    /**
     * Get a server by calling {@link AbstractServerPredicate#chooseRandomlyAfterFiltering(java.util.List, Object)}.
     * The performance for this method is O(n) where n is number of servers to be filtered.
     */
    @Override
    public Server choose(Object key) {
        ILoadBalancer lb = getLoadBalancer();
        Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);
        if (server.isPresent()) {
            return server.get();
        } else {
            return null;
        }       
    }
}

这里是调用的ZoneAvoidanceRule的父类中的choose()方法,首先是拿到对应的ILoadBalancer,然后拿到对应的serverList数据,接着调用chooseRoundRobinAfterFiltering()方法,继续往后跟:

public abstract class AbstractServerPredicate implements Predicate<PredicateKey> {

    public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) {
        List<Server> eligible = getEligibleServers(servers, loadBalancerKey);
        if (eligible.size() == 0) {
            return Optional.absent();
        }
        return Optional.of(eligible.get(incrementAndGetModulo(eligible.size())));
    }

    private int incrementAndGetModulo(int modulo) {
        for (;;) {
            int current = nextIndex.get();
            int next = (current + 1) % modulo;
            if (nextIndex.compareAndSet(current, next) && current < modulo)
                return current;
        }
    }
}

到了这里可以看到incrementAndGetModulo()方法就是处理serverList轮询的算法,这个和RoudRobinRule中采用的是一样的算法,这个算法大家可以品一品,我这里也会画个图来说明下:

技术图片

看了图=中的例子估计大家都会明白了,这个算法就是依次轮询。这个算法写的很精简。

Ribbon实际执行http请求逻辑

我们上面知道,我们按照轮询的方式从serverList取到一个server后,那么怎么把之前原有的类似于:http://ServerA/sayHello/wangmeng中的ServerA给替换成请求的ip数据呢?

接着我们继续看RibbonLoadBalancerClient.execute()方法,这个里面request.apply()会做一个serverName的替换逻辑。

最后可以一步步跟到RibbonLoadBalancerClient.reconstructURI(),这个方法是把请求自带的getURI方法给替换了,我们最后查看context.reconstructURIWithServer() 方法,debug结果如图,这个里面会一步步把对应的请求url给拼接起来:

技术图片

Ribbon中ping机制原理

我们知道 Ribbon还有一个重要的组件就是ping机制,通过上一讲Ribbon的初始化我们知道,默认的IPing实现类为:NIWSDiscoveryPing,我们可以查看其中的isAlive()方法:

public class NIWSDiscoveryPing extends AbstractLoadBalancerPing {
            
        BaseLoadBalancer lb = null; 
        

        public NIWSDiscoveryPing() {
        }
        
        public BaseLoadBalancer getLb() {
            return lb;
        }

        /**
         * Non IPing interface method - only set this if you care about the "newServers Feature"
         * @param lb
         */
        public void setLb(BaseLoadBalancer lb) {
            this.lb = lb;
        }

        public boolean isAlive(Server server) {
            boolean isAlive = true;
            if (server!=null && server instanceof DiscoveryEnabledServer){
                DiscoveryEnabledServer dServer = (DiscoveryEnabledServer)server;                
                InstanceInfo instanceInfo = dServer.getInstanceInfo();
                if (instanceInfo!=null){                    
                    InstanceStatus status = instanceInfo.getStatus();
                    if (status!=null){
                        isAlive = status.equals(InstanceStatus.UP);
                    }
                }
            }
            return isAlive;
        }

        @Override
        public void initWithNiwsConfig(
                IClientConfig clientConfig) {
        }
        
}

这里就是获取到DiscoveryEnabledServer对应的注册信息是否为UP状态。那么 既然有个ping的方法,肯定会有方法进行调度的。

我们可以查看isAlive()调用即可以找到调度的地方。
BaseLoadBalancer构造函数中会调用setupPingTask()方法,进行调度:

protected int pingIntervalSeconds = 10;

void setupPingTask() {
    if (canSkipPing()) {
        return;
    }
    if (lbTimer != null) {
        lbTimer.cancel();
    }
    lbTimer = new ShutdownEnabledTimer("NFLoadBalancer-PingTimer-" + name,
            true);
    lbTimer.schedule(new PingTask(), 0, pingIntervalSeconds * 1000);
    forceQuickPing();
}

这里pingIntervalSecondsBaseLoadBalancer中定义的是10s,但是在initWithConfig()方法中,通过传入的时间覆盖了原本的10s,这里实际的默认时间是30s。如下代码:

技术图片

我们也可以通过debug来看看:

技术图片

可能大家好奇为什么要单独截图来说这个事,其实是因为网上好多博客讲解都是错的,都写的是ping默认调度时间为10s,想必他们都是没有真正debug过吧。

技术图片

还是那句话,源码出真知。

Ribbon中其他IRule负载算法初探

  1. RoundRobinRule:系统内置的默认负载均衡规范,直接round robin轮询,从一堆server list中,不断的轮询选择出来一个server,每个server平摊到的这个请求,基本上是平均的

    这个算法,说白了是轮询,就是一台接着一台去请求,是按照顺序来的

  2. AvailabilityFilteringRule:这个rule就是会考察服务器的可用性

    如果3次连接失败,就会等待30秒后再次访问;如果不断失败,那么等待时间会不断变长
    如果某个服务器的并发请求太高了,那么会绕过去,不再访问

    这里先用round robin算法,轮询依次选择一台server,如果判断这个server是存活的可用的,如果这台server是不可以访问的,那么就用round robin算法再次选择下一台server,依次循环往复,10次。

  3. WeightedResponseTimeRule:带着权重的,每个服务器可以有权重,权重越高优先访问,如果某个服务器响应时间比较长,那么权重就会降低,减少访问

  4. ZoneAvoidanceRule:根据机房和服务器来进行负载均衡,说白了,就是机房的意思,看了源码就是知道了,这个就是所谓的spring cloud ribbon环境中的默认的Rule

  5. BestAvailableRule:忽略那些请求失败的服务器,然后尽量找并发比较低的服务器来请求

总结

到了这里 Ribbon相关的就结束了,对于Ribbon注册表拉取及更新逻辑这里也梳理下,这里如果Ribbon保存的注册表信息有宕机的情况,这里最多4分钟才能感知到,所以spring cloud还有一个服务熔断的机制,这个后面也会讲到。

技术图片

申明

本文章首发自本人博客:https://www.cnblogs.com/wang-meng 和公众号:壹枝花算不算浪漫,如若转载请标明来源!

感兴趣的小伙伴可关注个人公众号:壹枝花算不算浪漫

技术图片

【一起学源码-微服务】Ribbon 源码四:进一步探究Ribbon的IRule和IPing

标签:ide   info   image   cte   例子   etl   整合   cli   led   

原文地址:https://www.cnblogs.com/wang-meng/p/12166148.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!